Crestron SIMPL+®
Software

Language Reference Guide

CRESTRON

This document was prepared and written by the Technical Documentation department at

“XV CRESTRON

Crestron Electronics, Inc.
15 Volvo Drive
Rockleigh, NJ 07647
1-888-CRESTRON

All brand names, product names and trademarks are the property of their respective owners.

©2003 Crestron Electronics, Inc.

Crestron SIMPL+® Software

Contents

SIMPL+ Language Reference Guide

INtrOdUCHION e 1
Software ReqUITEMENtS.o 1
Licensing of SIMPL+ CrossCompiler i i 2
WAt S NBW ..o e 7
Converting from an X-Generationto a2-SeriesTarget, 7
X-Generation Target and 2-Series Target Differences 7
Programming Environment. e 8
Programming Environment OVerview, 8

Target Selection e 8

Edit Preferences 9
INSEIt CalegoOrY . oot it e 11

General Information e 13
ConventionSUSedt 13
Variable Names 13
COMMIENES ..ot e 13
Relative Path Namesfor Files i 14
OB AIOrS . o vttt e 15
OpPEratorS OVEIVIEW . . .ottt e e ettt e e et 15
Signed vsUnsigned Arithmetic i 18
Operator Precedence & Groupingovviniiiennnnennnnn. 20
NUMErCFOrMaLSo e 21

Task SWItChiNg. 22
Task Switching for X-Generation (CNX) Control Systems 22
Task Switching for 2-SeriesControl Systems 25
Language Constructs & FUNCLIONS o e e 29
Language Constructs & FunctionsOverview, 29

ALY S . it e 31
Compiler DIreCtiVESo e 33
#CRESTRON_LIBRARY ... 34
#DEFAULT_NONVOLATILE ... e 35

Language Reference Guide - DOC. 5797G Contents @ i

Software Crestron SIMPL+ ®

#DEFAULT _VOLATILE ... e 36
HDEFINE_CONSTANT ..t 37
HHEL P 38
#HELP BEGIN ... #HELP END 39
HHINT L 40
#IF_ DEFINED ... #ENDIF e 41
#SYMBOL_NAME ... o 42
HUSER _LIBRARY ..t 43
#IF_ NOT_DEFINED ... #ENDIF e 44
Dl aratiONSt 45
DeClarationS OVEIVIEW . ..o vttt et et 45
Fixed and Variable Size Arrayst 46
ANALOG _INPUT . e 47
ANALOG_OUTPUT ..ttt et 48
DIGITAL _INPUT o e e 51
DIGITAL _OUTPUT oo e e e 52
INTEGER ... e e e 54
LONG_INTEGER ... e 56
SIGNED_INTEGER i 58
SIGNED_LONG_INTEGERttt 60
STRING o 62
STRING _INPUT e e e 64
STRING _OUTPUT ..ot et e 65
STRUCTURES e e 67
Nonvolatileo e 70
SendMail ... o 73
EVENT L 77
PUSH o 78
REEESE .. o 79
Stacked EVENtS 80
FOR o 83
WHILE .. 85
COWITCH .. 87
IF - ELSE . 89
SWITCH . 91
GetLastModifiedArraylndex i 93
GetNUMATIrayCols 95
GetNUMAITAYROWS . ..o e e e e e e 97
S A Y ottt i e 98
By . o 102
High o 103
LW ot 104
Rotatel eft ... 105
RotateRight e 106
RotateLeftLongovv it 107
RotateRightLongo e 108
A0l . 110
CNr 111
EOA 112
OHEX .o 113
LtOA 114
LEOHEX o 115
File FUNCLIONS e e e 116
FileFunctionsOverview i e 116

ii ® Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

File Function Return Error Codest 117
Reading and Writing DatatoaFile 118
CheckForDisk 119
EndFleOperationst e 120
FIlEBOF . 121
FIleClose ... 122
FileDate . ..o 123
FileDay ..o 125
FileDelete o 126
FILEEOF . . 127
FileGetDateNum e 128
FileGetDayOfWeekNUMot i 129
FileGetHOUrNUMo e 130
FileGetMinutESNUM o 131
FileGetMonthNum 132
FileGetSecondsNUM e 133
FileGetYearNUmM 134
FILE_INFO SITUCIUIrE . ..ottt i 135
Filelength 136
FileMonth 137
FleOpen ... e 138
FileRead 141
FIESEEK . oot 143
FileTime .o 145
FINdCIOSe . . . oo 148
FindFirst ..o 149
FiNdNeXt 151
GEtCUrENtDIrECtOrY . .ottt e e e e 152
IS DITECIONY . .ot e e 153
IsHIidden 154
ISREAAONIY ... e 155
S 156
[SVOIUME . .o 157
MaKeDITECIOrY . .. oo e 158
Readinteger ... e 159
ReadiNtegerArTayt e 161
ReadLongintegert e 163
ReadLongIntegerArraycvi it et 165
ReadSignedinteger e 167
ReadSignedintegerArrayt 169
ReadSignedLongIntegerArrayccveni it 173
ReadSING . ..o e 175
REadSIINGAITAY ..o e e 177
ReadStructureo 179
ReMOVEDITECtOrY ... e 181
SetCurrentDirectory 182
StartFileOperationst 183
WatFOrNeWDISK oo 184
Writelnteger 185
WritelntegerAITaY ..o 187
WriteLonginteger ... 189
WriteSignedinteger e 191
WriteSignedintegerArrayttt 193
WriteSignedLonginteger ...t 195

Language Reference Guide - DOC. 5797G Contents @ iii

Software Crestron SIMPL+ ®

WriteSignedLongIntegerArraycoiii i 197
WIS NGAITAY . oot e e e et 201
WHEESHTUCIUNE . . . o e e e 203
I 206
MIN 207
MUIDIV . e 208
S A X 209
SN L 210
RaNdom 211
RN .. 212
SO0 . . 213
PriNt . 216
String Concatenationiiii e 218
Find .o 220
Gather .. 221
G L 223
0 224
0 225
O Er . e 226
M 227
REVERSEFIND e e 229
Right .. 230
S NG ..ot e e 231
L0 0] 0 233
ProCesSLOgiC . v v oo e 235
PUISE o 236
TerminateEvent e 237
GenerateUserNotICet e 238
GenerateUserWarningiii it e e e 239
GenerateUsSarErmor ... 240
CheckFOrNVRAMDISK ..ot e 241
DAY . 243
GETDATENUM . .. o e 244
GETDAYOFWEEKNUM e 245
GETHOURNUM .. e e i 246
GETHSECONDS ... e e e 247
GETMINUTESNUM ... i 248
GETMONTHNUM . ..o e e 249
GETSECONDSNUM ..o 250
GETTICK S . e e 251
GETYEARNUM .. e e 252
MONTH . 253
SETCLOCK .t 254
SETDATE . .t 255
TIME .« 256
Cancal AlIWait o 258
CancalWalt e 259
PauseAlIWait 260
PauseWait 261
RetimeWalt e 264
At . 265
Function Parameterst e e 268
ByRef, ByVal, ReadOnlyByRefcccoiiiiiiiiinnn, 269
ReturningaValue e e e 272

iv @ Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

CdlingaFunction i e 274
Function Libraries i 275
Example 2: 8-Level switchonaPesaswitcher 280

Example 3: Computing the Number of Daysin aMonth
(UsSiNgFUNCLIONS)ot e e e e e 282

Example 4: Computing the Number of Daysin aMonth
(Using Function Libraries)cooiiiiiiniinnnnn 283
Compiler Errors and Warningso oot e e e i et e e 286
Compiler Errorsand WarningS OVerviewveviineiineennannn. 286
Syntax Errors (Compiler Errors1000t01013)oiii i 289
Compiler Error 1000t e 289
Compiler Error 1001t 290
Compiler Error 1002 oo 292
Compiler Error 1003 oo 293
Compiler Error 1004 oo 293
Compiler Error 1005 oo 294
Compiler Error 1006ottt 294
Compiler Error 1007ot 295
Compiler Error 1008ot 296
Compiler Error 1009 297
Compiler Error 1010ot 298
Compiler Error 1011o 298
Compiler Error 1012o 299
Compiler Error 1013o o 299
Fatal Errors (Compiler Errors1100t02201)ov et 300
Compiler Error 1100ot 300
Compiler Error 1101o 301
Expression Error (Compiler Errors1200t01201)civiiinevnn... 301
Compiler Error 1200t 301
Compiler Error 1201o 303
Declaration Errors (Compiler Errors 1300t01312) ..., 304
Compiler Error 1300ot 304
Compiler Error 1301o 305
Compiler Error 1302o 306
Compiler Error 1303 oot 307
Compiler Error 1304o 308
Compiler Error 1305ot 308
Compiler Error 1306 oottt 309
Compiler Error 1307o 310
Compiler Error 1308o 311
Compiler Error 1309 oo 312
Compiler Error 1310ot 313
Compiler Error 1311o 314
Compiler Error 1312o 315
Compiler Error 1313o 315
Compiler Error 1314o 316
Assignment Errors (Compiler Errors 1400t01402)ccvviienann... 317
Compiler Error 1400 317
Compiler Error 1401o o 318
Compiler Error 1402o o 318
Function Argument Errors (Compiler Errors 1500t01508) 319
Compiler Error 1500 319

Language Reference Guide - DOC. 5797G Contents ® v

Software Crestron SIMPL+ ®

Compiler Error 1501o it e 320
Compiler Error 1502ot e 321
Compiler Error 1503ot e 321
Compiler Error 1504 oo e 322
Compiler Error 1505ot e 323
Compiler Error 1506o e e 324
Compiler Error 1507o it e 324
Compiler Error 1508o o e 325
Construct Errors (Compiler Errors 1600t01608)ccovviennn... 326
Compiler Error 1600o vt 326
Compiler Error 1601o ot e 326
Compiler Error 1602o o e 327
Compiler Error 1603 oo e 328
Compiler Error 1604 oo e 329
Compiler Error 1605ot 329
Compiler Error 1606ot 330
Compiler Error 1607 oot 331
Compiler Error 1608ottt 331

File Errors (Compiler Errors 1700t01702)coviii it 332
Compiler Error 1700o oot e 332
Compiler Error 1701o 332
Compiler Error 1702 oot e 332
Compiler Warnings (Compiler Errors1800t01803)ccvvivieninn.. 333
Compiler Warning 1800ttt e 333
Compiler Warning 1801ot e 333
Compiler Warning 1802t i 334
Compiler Warning 1803 it e 335
SIMPL+ REVISIONS . ..ottt e e e 336
Obsolete FUNCLIONSo e e 337
System Interfacing- Cresnetand CPU i 337
GEICIP 337

GG ESNEt .. o e 338

GEISIOt .. 339
IsSignalDefined i 340
SendCresnetPacket i 341
SendPacketTOCPUo e e e 342

SECIP . 343

S ESNEL . .. e 344

St Sl Ot . . 345
#ANALOG _OUTPUT JOIN . ..t 347
#DIGITAL_INPUT _JOIN ... e 347
#DIGITAL_OUTPUT JOIN ...t e 348
#STRING_INPUT JOIN ...ttt 348
#STRING_OUTPUT _JOIN ... e 349
CEN-OEM-Specific Definitions e 350
COEM_BREAK ...t 350
COEM_CD ot 351

COEM _CTS ottt e 351
COEM DT R .ttt e e e 352
_OEM_LONG BREAK ...\ttt 353
_OEM_MAX_STRING ...\ttt 353
COEM_PACING . ..ttt 354

vi ® Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

LOEM RIS o 355
COEM _STR N o 355
COEM_STR OUT .ottt e e 356
X . . 357
Software License AQreementottt e 361
Return and Warranty PoOlIiCIES. e e e e 363

Language Reference Guide - DOC. 5797G Contents @ vii

Software Crestron SIMPL+ ®

This page intentionally left blank.

viii ® Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Introduction

SIMPL +® is alanguage extension that enhances SIMPL Windows by using a

procedural “C-like” language to code elements of the program that were difficult, or
4= impossible, with SIMPL alone. This help system provides specific information about
'E the SIMPL + language syntax, and can be used as a reference manual.

For atutorial on SIMPL+ programming, consult the SIMPL + Programming Guide
(Doc. 5789). The latest version of the guide can be obtained from the Downloads |
Product Manuals section of the Crestron website (www.crestron.com).

Software Requirements

SIMPL+ has several versions. Earlier versions of SIMPL+ do not contain features
and constructsfound in later revisions. Each version of SIMPL+ requiresaminimum
revisions of SIMPL Windows and Control System Update (UPZ or, for 2-Series
control systems, CUZ) files. The specifications are listed below.

Software Requirements

SIMPL+ VERSION | MINIMUM SIMPL WINDOWS REQUIRED MINIMUM UPZ | MINIMUM CUZ
Version 1.00 1.30.01 5.04.11 N/A
Version 2.00 1.40.02 5.10.00 N/A
Version 3.00 2.00 N/A 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 1

Software Crestron SIMPL+®

Licensing of SIMPL+ Cross Compiler

Crestron SIMPL+ Cross-Compiler Version 1.1 is simply an Installshield-installed version of the Coldfire GNU C
Compiler, which isavailable on Crestron's FTP site in the SIMPL Windows directory as directory GNUSOURCE in ftp://
ftp.crestron.com/Simpl_Windows and in the \GNU Source directory of the Programming Tools CD.

It includes and references code that is avail able from www.cygwin.com/cvs.html

Some files are deleted by the Installshield procedure which are not necessary for general use of the C compiler, in order to
save space on user PCs. But it isan unmodified version of this code. The original executables and the source code for them
can be obtained from the authors at the above sites

The source code has also been gathered underneath a single directory for your convenience and is available on Crestron's
FTPsiteinthe SIMPL Windows directory asdirectory GNUSOURCE in ftp://ftp.crestron.com/Simpl_Windowsand inthe
\GNU Source directory of the Programming Tools CD. They also include GNU utilities, which are copyrighted by the Free
Software Foundation.

Other Crestron software simply executesthis code as a separate executable, and does not incorporate GNU source codeinto
Crestron software. Crestron's standard licensing agreement does not apply to this software; only the license described here

applies.

This program isfree software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Thisprogram isdistributed in the hopethat it will be useful, but WITHOUT ANY WARRANTY ; without even theimplied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Refer to the GNU General Public
License for more details.

Y ou should have received a copy of the GNU General Public License along with this program (it is appended to this
document for your convenience); if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

Thetext for the license agreement below is also available from www.gnu.org/copyleft/gpl.html

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public Licenseisintended to guarantee your freedom to share and change free software--to make sure the software
isfreefor al itsusers. This General Public License appliesto most of the Free Software Foundation's software and to any
other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) Y ou can apply it to your programs, too.

2 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make
surethat you have the freedom to distribute copies of free software (and chargefor thisserviceif you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender
the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for afee, you must give the recipients al the
rightsthat you have. Y ou must make sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for
thisfree software. If the softwareis modified by someone el se and passed on, we want its recipientsto know that what they
have is not the original, so that any problemsintroduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a
free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not licensed at al.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License appliesto any program or other work which contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License. The “Program”, below, refersto any such program or work,
and a“work based on the Program” means either the Program or any derivative work under copyright law: that isto say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or trandated into another
language. (Hereinafter, trandation isincluded without limitation in the term “modification”.) Each licensee is addressed as
“you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The
act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the noticesthat refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

Y ou may charge afee for the physical act of transferring a copy, and you may at your option offer warranty protection in
exchange for afee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming awork based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified filesto carry prominent notices stating that you changed the files and the date of any
change.

b) Y ou must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as awhole at no charge to al third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run, you must cause it, when started running for
such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program

Language Reference Guide - DOC. 5797G SIMPL+® @ 3

Software Crestron SIMPL+®

itself isinteractive but does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate worksin themselves, then thisLicense, and itsterms,
do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as
part of awhole which isawork based on the Program, the distribution of the whole must be on the terms of this License,
whose permissionsfor other licenseeis extend to the entire whol e, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with awork based on the
Program) on avolume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or awork based on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with awritten offer, valid for at |east three years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete machine-readabl e copy of the corresponding source code, to
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

¢) Accompany it with the information you received asto the offer to distribute corresponding source code. (Thisaternative
isallowed only for noncommercial distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for awork means the preferred form of the work for making modifications to it. For an executable work,
complete source code means all the source code for al modulesit contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable. However, as a specia exception, the source
code distributed need not include anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. Y ou may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any
attempt otherwiseto copy, modify, sublicense or distributethe Programisvoid, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and al itsterms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Eachtimeyou redistributethe Program (or any work based on the Program), the recipient automatically receivesalicense
from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. Y ou may not
impose any further restrictions on the recipients exercise of therights granted herein. Y ou are not responsiblefor enforcing
compliance by third partiesto this License.

7. If, asaconseguence of acourt judgment or allegation of patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you cannot distribute so asto satisfy

simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not

4 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section isheld invalid or unenforceable under any particular circumstance, the balance of the section
isintended to apply and the section as awhole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity
of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system,
which isimplemented by public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to
decideif he or sheiswilling to distribute software through any other system and alicensee cannot impose that choice.

This section isintended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public Licensefromtimetotime.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given adistinguishing version number. If the Program specifies a version number of this License which
appliestoit and “any later version”, you have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does not specify aversion number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS’
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIROR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BELIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGESARISING OUT OF THEUSE ORINABILITY TOUSE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATEWITHANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HASBEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Termsto Y our New Programs

Language Reference Guide - DOC. 5797G SIMPL+® @ 5

Software Crestron SIMPL+®

If you develop anew program, and you want it to be of the greatest possible use to the public, the best way to achieve this
isto make it free software that everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “ copyright” line and a pointer to where
the full noticeisfound.

Onelineto give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program isfree software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Thisprogramisdistributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even theimplied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Refer to the GNU General Public
License for more details.

Y ou should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program isinteractive, make it output a short notice like this when it startsin an interactive mode:
Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY: for details type “show w'.

Thisisfree software, and you are welcome to redistribute it under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c' should show the appropriate parts of the General Public License. Of
course, the commands you use may be called something other than “show w' and “show c'; they could even be mouse-clicks
or menu items--whatever suits your program.

Y ou should also get your employer (if you work as a programmer) or your schoal, if any, to sign a*“ copyright disclaimer”
for the program, if necessary. Here is a sample; alter the names:

Y oyodyne, Inc., hereby disclaims all copyright
interest in the program “Gnomovision'

written by James Hacker.

signature of Ty Coon, 1 April 2002

Ty Coon, Vice President

This General Public License does not permit incorporating your program into proprietary programs. If your programisa
subroutinelibrary, you may consider it more useful to permit linking proprietary applicationswith thelibrary. If thisiswhat
you want to do, use the GNU Library General Public License instead of this License.

FSF & GNU inquiries & questions to gnu@gnu.org.

6 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

What's New

Converting from an X-Generation to a 2-Series Target

e Select 2-Series Target within SIMPL+ environment (From the SIMPL +
application menu, select Build | 2-Series Control System Target. The X-
Generation Target may be deselected if no longer needed).

e Recompile the SIMPL+ program.

X-Generation Target and 2-Series Target Differences

e |/ODatatypes (DIGITAL_INPUT, etc.) can no longer be passed to functions as
arguments.

e Global variables can no longer be declared within User or Crestron Libraries.

o |If TerminateEvent resides within a Wait Statement Block, it will only exit the
Wait Statement Block's function scope - NOT the PUSH, CHANGE,
RELEASE or EVENT in which it resides.

The following functions are no longer available in the 2-Series Control System:
GetCIP()
SetCIP()
GetCresnet()
SetCresnet()
GetSlot()
SetSlot()
_OEM functions
#ANALOG_INPUT_JOIN
#ANALOG _OUTPUT_JOIN
#DIGITAL_INPUT_JOIN
#DIGITAL_OUTPUT_JOIN
#STRING_INPUT_JOIN
#STRING_OUTPUT_JOIN

Language Reference Guide - DOC. 5797G SIMPL+® @ 7

Software Crestron SIMPL+®

Programming Environment

Programming Environment Overview

While running SIMPL Windows, select File | New SIMPL + and the SIMPL +
programming environment appears. This section describes the environment for
SIMPL+ Version 3.00.

The SIMPL+ M odule Information templateisfilled with commented code that makes
it easy to remember the language syntax and structure. Simply locate the necessary
lines, uncomment them, and add the appropriate code. To uncomment aline of code,
either removethe “//” that appears at the start of the line or remove the multi-line
comment indicators /*...*/.

Target Selection

Target Selection Pulldown Menu

B SIMPL+ - SPlus1
File Edit iew Tools ‘window Help
0= n Check Syntax -:? :
= Sawe and Compile F1z2 ——!

#-Generation Control System T arget
v 2-Seriez Control Spztem T arget

Bebuild Al

X Generation (CNX) Control Systems consist of the CEN-TVAV, CNMSX-AV/
PRO, and CNRACKX/-DP.

The 2-Series Control Systems currently consist of the AV2, CP2, CP2E, PAC2,
PAC2M, PRO2, and RACK2.

Selecting atarget implies that the module MUST work for that target and any
statementsthat are not valid for that target are NOT permitted. It doesNOT mean that
the module won't work for other targets - it may, if it were compiled for other targets
at some future time. More functions and support are available for 2-Series systems,
so do not limit yourself to the X-Generation usages, if they are not needed.

8 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

NOTE: In previous versions of SIMPL+, the settings for the target types were
system-wide. Those settingsapplied to all SIMPL+ modulesthat were opened and not
specific to the active module being edited. In version 3.00, the target type setting is
specific only to the active module being edited and saved within that module. The
toolbar buttons reflect the target type of the active module within the SIMPL+
environment.

One or both targets may be selected to compile the program for both types of control
systems. When compiling a program for a specific type of control system, an error
message appears if awrong control system target is selected that does not support a
particular function or syntax.. Shown below are thetwo target selection buttons of the
menu toolbar.

Toolbar Target Selection Buttons.

¥ SIMPL+ - SPlus1

File Edt “iew Buld Tools “Window Help

O] & |=|@ 3w @2 S| e

T

X-GEN - shortcut to Build | X-Generation Control Systems Target 2 - shortcut to
Build | 2-Series Control Systems Target. (Thisisthe default setting upon opening
SIMPL+.)

NOTE: If aprogram is compiled for the wrong type of control system, an error
9 message appears when attempting to upload, and the program must be recompiled.

Edit Preferences

Preferences Toolbar Pull-Down Menu

f SIMPL+ - SPlus1

._I_—l Undo Ctrl+2 | :ﬁ'% @I c?l

S0t [tr]
Eamy [EEr{+E
Haste (et
Find... Ctil+F
Replace Ctrl+H

Inzert HCATEGORY...

Language Reference Guide - DOC. 5797G SIMPL+® @ 9

Software

Crestron SIMPL+®

Text Editor Tab

Preferences

Text Editar l Target Devices]

Font Tabz
Fort Mame: Courier Mew Tab Size: |4
Font Size: 10

[Insert spaces for tabs

[Baold [[Italic

Curzor Pogitioning

¥ AutoIndent
[Allow cursor positioning past end of line

0k, Cancel

Font - Used to select font to be used in SIMPL+ Text Editor's main window.

Cursor Positioning, Auto-1ndent - When the ‘enter’ key is pressed, the cursor will
automatically indent to the same initial tab position asin the current line.

o Tomanualy indent ablock of text, highlight the block and press TAB.

e To manualy outdent ablock of text, highlight the block and press
SHIFT and TAB.

e If you have manually inserted spaces for tabs, then pressing SHIFT
TAB will only outdent by only one space.

Cursor Positioning, Allow cursor positioning past end of line - If checked, the
cursor will be allowed to be placed anywhere within thetext editor. Thisincludesany
white-space area. Disabling this option will force the cursor to the end of the current
line selected when the cursor is clicked on any white-space past the end of the line.

Tab Size - The number of spacesthat equal 1 tab character.
Insert Spacesfor tabs - Spaceswill be inserted in place of the tab character.

10 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Target Devices Tab

Preferences x

Test Editar Target Devices l
Cormpiler Dptions

[E=ecute SIMPL+ Cross Compiler
[v¥ Dizplay Compile A armings

]9

Execute SIMPL + Cross Compiler - After target files are compiled, the cross
compiler can be launched from the SIMPL + environment. Thiswill enable you to
generate the target file that will be uploaded to the operating system. Normally, the
SIMPL Windows environment will handle this, sinceit is responsible for uploading
the target file to the operating system.

Display Compile War nings - When selected, the compiler displaysal program
warnings during compile in the compile output window. The total number of
warnings will always be displayed whether this option is selected or not.

Insert Category

Displaysalist of al available categoriesfor the symbol tree in the SIMPL Windows
environment. Thislist isfor reference only.

To specify acategory for a SIMPL+ module, the #CATEGORY directive must be
used with acategory specified in thislist. If acategory nameistyped in that does not
exist in the Symbol Tree Category list, the SIMPL+ module will default to the
category type, Miscellaneous.

Symbol Tree Category List in SIMPL Windows

#= SIMPL Windows

Eile Edit “iew Project Bookmarks Tool: Help Online Support

7] Di=E] sl 5 [e]a] (s =] =) =) o)

Symbol Library Program View
SR §Logic Symbols
+-_] -4l Symbols--
+-_] Analog Operations
+-__] CNRACK-D Operations
+-|__] Conditional
+-__] Counters

Language Reference Guide - DOC. 5797G SIMPL+® @ 11

Software Crestron SIMPL+®

Insert #CATEGORY Toolbar Pull-Down Menu in SIMPL+

[SIMPL+ - SPlusl

Eile 3@ “Yiew Buld Toolz “Window Help

[y Undo CihZ behy| mafe 5| 9|

Find... Ctrl+F
Replace Ctrl+H

Inzert CATEGORY...

Freferences...

Symbol Tree Category Pop-Up Window

Symbol Tree Categories

Symbol Tree Categones:

- Analog Operations -
- Conditional

- Debugging

- Device Interface

- Dewvice Selection

- Lighting

7 - Sequencing Operationz
8 - Media Resource

9 - Memory

10 - Senal

11 - Counters

12 - Syztem Control

13- Timers ﬂ

Insert | Close |

1
2
3
4
5

=

Category Selection I nsertion Box
%]

Symbol Tree Categories:

1 - &nalog Operations :l
2 . Crmdibimeal
SIMPL+

& The category, Lighting, will be automatically inzerted into the SIMPL+ module

Cancel
12 - System Contral
13 - Timers j

Inzert | Cloze |

12 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

General Information

Conventions Used

Variable names are placed in <> when discussing syntax. For example, PUSH
<variable>.

Optional parametersare placed in[]. For example, when alist has many parameters,
it would be described as <varl>[, <var2>...] When discussing array notation, [] is
used for array subscripting and is not used to mark optional code.

Examples are placed in a Computer Stylefont, i.e.,
MyVariable = ATOI(SomeOtherVariable);

Variable Names

Variable namesin SIMPL + may be up to 30 characters|ong and may not contain any
of the operators specified in the “Operators’ section. Valid charactersin avariable
name are a-z, A-Z, 0-9, #, _, and $ but may not begin with 0-9.

V ariable names may not duplicate existing function or keyword names.

Variable namesin SIMPL+ are not case sensitive. For example, declaring avariable
“joe” can beused as“jOe” or “JOE” or any variation of case.

ﬂ NOTE: Version 3.00.12 users: variable names may be 120 characters for 2-Series
systems.

Comments

It is beneficial to comment code to make it more readable and for documentation.
Comments do not exist in any form after code generation and are not required.

SIMPL + has two styles of comments, single line and block comments. Single line
comments start with the characters//. Therest of the line (until a carriage return) is
considered a comment. If they occur within a quoted string, such asin PRINT, they
are NOT treated as comment characters, but rather as two backslash (Hex 2F)
characters.

Examples:
PRINT(“Hello, World!\n”); // This stuff is a comment.
PRINT(“hello, // world!\n); // This stuff is a comment,
// but the string actually

Language Reference Guide - DOC. 5797G SIMPL+® @ 13

Software

Crestron SIMPL+®

// printed is hello,

// world.
The second form of comment characters are the block comments. /* starts a block
comment and */ ends a block comment. Thisis useful for commenting out large
sections of code or writing large sections of documentation. Note that nested

comments are not supported. Also, if /* or */ appear inside of a quoted string such as
in an PRINT statement, they are not considered comments but part of the string.

Examples:
/*
This
is
all
a comment!
*/
PUSH Trig
{
// code that does something.

}

Relative Path Names for Files

Y our current working directory is reset to the default (“\” or root) whenever
“ StartFileOperations’ is performed. It is changed only by “ SetCurrentDirectory”.

File names can consist of full path names or relative path names.

e Full path names have the same restrictions as DOS file namesin
characters and format, with a maximum length of 256 characters.

e Relative path names do not begin with a“\” and start from the current
working directory.

14 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Operators

Operators Overview

SIMPL + operators perform functions between two or more variables. SIMPL +
operators consist of Arithmetic, Bitwise, and Rational Operators.

Arithmetic Operators

OPERATOR NAME EXAMPLE EXPLANATION
- Negation -X Negate the value of X (2's Complement of X).
* Multiplication X*Y Multiply X by Y (signed arithmetic).
/ Unsigned Division XY Divide X by Y, truncates result (unsigned arithmetic).
S/ Signed Division XSlY Divide X by Y, truncates result (signed arithmetic).
MOD Signed Modulo XMOD Y Remainder after dividing X by Y (signed arithmetic).
UMOD Unsigned Modulo X UMOD Y Remainder after dividing X by Y (unsigned arithmetic).
Only 2-Series Systems.
+ Addition X+Y Add the value of Y to X.
- Subtraction X-Y Subtract the value of Y from X.
Bitwise Operators
OPERATOR NAME EXAMPLE EXPLANATION
<< Shift Left X<<yY Shift X to the left by Y bits; O is Shifted in.
>> Shift Right X>>Y Shift X to the right by Y bits; 0 is Shifted in.
{ Rotate Left X{Y Rotate X to the left by Y bits; full 16 bits used. Same as
RotateLeft().
B Rotate Right X1}y Rotate X to the right by Y bits; full 16 bits used. Same as
RotateRight().
NOT 1's Complement NOT(X) Change 0 bits to 1, 1 bits to O.
& Bitwise AND X&Y AND the bits of X with the bits of Y.
[Bitwise OR XY OR the bits of X with the bits of Y.
A Bitwise XOR XNY XOR the bits of X with the bits of Y.

NOTE: For the Shift and Rotate operators, only the lower 5-bitsof Y are used, giving

1

values of Y ranging from 0 to 31. For example, if Y=600, the lower 5-bits equate to
24. Rotating a 16-bit number through 16 positions gives the original number back.

Therefore, for rotating 24, the result is equivalent to rotating through 8. Shifting
greater than 16 will always give a0 as aresult.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 15

Software

Crestron SIMPL+®

Relational Operators

OPERATOR NAME EXAMPLE EXPLANATION

= Comparison X=Y True if X is equal to Y, False otherwise.

= Assignment X=Y Assigns the contents in Y to X. The assignment

operator cannot be used within expressions.

! Complement X If X =0, X changes to 1. If X is different from 0,

evaluates to 0.

<> Not Equal To X<>Y Xis notequal to Y.

< Unsigned Less Than X<Y X is less than Y (unsigned).

> Unsigned Greater X>Y X is greater than Y (unsigned).

<= Unsigned Less Than or Equal X<=Y X is less or equal to Y (unsigned).

>= Unsigned Greater Than or Equal | X >=Y X is greater or equal to Y (unsigned).

S< Signed Less Than XSs<Y X is less than Y (signed).

S> Signed Greater Than XS>Y X is greater than Y (signed).

S<= Signed Less Than or Equal XS<=Y X is less or equal to Y (signed).

S>= Signed Greater Than or Equal XS>=Y X is greater or equal to Y (signed).

&& Logical AND X&&Y True if X and Y are both non-zero. False

otherwise.

Il Logical OR XY True if either X or Y is non-zero. False otherwise.
All of the above operators, with the exception of the negation (-), NOT, and
complement (!) operators, are called binary operators. Binary operators take two
values, perform an operation, and return athird value as aresult. For example, 5 + 6
would return the value of 11. The arguments for a given operator are called its
operands. In the above example, the + sign is the operator and 5 and 6 are the
operands.

The negation, NOT, and complement operators are called unary operators, which
means it takes a single number and performs an operation. In this case, the negation
operator performs a negate, or 2's complement. A 2's complement takes a 16-bit
number, bitwise invertsit, and adds 1. The operand in a negation is the value being
negated. Operands do not have to be simple numbers. They may also be variables or
the results of afunction call. For example, in the expression -X, the - sign isthe
operator and the variable X isthe operand.

16 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

String Operators

OPERATOR NAME EXAMPLE EXPLANATION
= Assignment* A$ =B$ Assigns the value in B$ to A$.
*NOTE: Not allowed in expressions because of possible confusion with comparison.
= Comparison A$ = B$ A3 equal B$
<> Not Equal To A$ <> B$ A$ is not equal to B$
< Less Than A$ < B$ A$ is less than B$
> Greater Than A$ > B$ A$ is greater than B$

For less than and greater than operations, the string is evaluated in ASCII order. For
example, the comparison “ABC” > “ABD” would be false. The system looks
character by character; the first two characters areidentical in both strings, and when
it evaluated the characters C (ASCII 67) vs. D (ASCII 68), theresult isfalse. The
comparison “ABC”’<**ABCD”” istrue because a shorter string al phabetically precedes
onethat isidentical but longer.

Language Reference Guide - DOC. 5797G SIMPL+® @ 17

Software Crestron SIMPL+®

Signed vs Unsigned Arithmetic

ANALOG_INPUT, ANALOG_OUTPUTSs, and INTEGER in SIMPL+ are 16-bit
guantities. A 16-bit quantity can range from 0 - 65535 when it is treated without
having a sign (positive or negative). If a 16-bit number istreated assigned in

SIMPL +, therange becomes-32768to 32767. Therangefrom -32768to -1 mapsinto
32768 to 65535. Expressed mathematically, the mapping is 65536 -
AbsoluteVaue(Number). The values are treated differently depending on whether
signed or unsigned comparisons are used. Another way is as follows.

Signed 0 - 32767 32768 - 65535
Unsigned 0 - 32767 -32768 - -1

Assignments may be directly done with negative constants, for example:
INTEGER 1, J;
I = -1;
J = 65535;

Resultsin | being equivalent to J.

Example:
IF (65535 S> 0)
X=0;
ELSE
X=1;
Above, the value of X isset to 1 sincein signed arithmetic, 65535 isthe same as -1,
which is not greater than 0.
IF (65535 > 0)
X=0;
ELSE
X=1;
Above, thevalue of X isset to 0 sincein unsigned arithmetic, 65535 is greater than 0.

18 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Datatype Conversions
SOURCE DESTINATION ACTION
INTEGER LONG_INTEGER Lower 2 bytes of destination = source.
Upper 2 bytes cleared.
INTEGER SIGNED_INTEGER The 2 bytes of source moved to destination.
2 byte number now treated as signed.
INTEGER SIGNED_LONG_INTEGER Lower 2 bytes of destination = source.

LONG_INTEGER

LONG_INTEGER

LONG_INTEGER

SIGNED_LONG_INTEGER
SIGNED_LONG_INTEGER
SIGNED_LONG_INTEGER

SIGNED_INTEGER

SIGNED_INTEGER
SIGNED_INTEGER

INTEGER

SIGNED_INTEGER

SIGNED_LONG_INTEGER

INTEGER
SIGNED_INTEGER
LONG_INTEGER

INTEGER

LONG_INTEGER
SIGNED_LONG_INTEGER

Upper 2 bytes cleared.

Lower 2 bytes of source moved to destination,
treated as unsigned.

Lower 2 bytes of source moved to destination,
treated as signed.

The 4 bytes of destination = source, now treated as
signed.

Lower 2 bytes of source moved to destination.
Lower 2 bytes of source moved to destination.

The 4 bytes of destination = source, now treated as
unsigned.

Lower 2 bytes of source moved to destination, 2 byte
number now treated as unsigned.

2 byte source is sign extended to 4 bytes

2 byte source is sign extended to 4 bytes

Language Reference Guide - DOC. 5797G

SIMPL+® @ 19

Software

Crestron SIMPL+®

Operator Precedence & Grouping

In an expression where many operators are present, some operators have “priority”
over others. Operators with the same precedence level are evaluated strictly left to
right. Grouping is used to change the way an expression is evaluated.

Operator Precedence & Grouping

PRECEDENCE LEVEL OPERATORS
1 - (Negate)
2 INOT
3 */ S/ MOD
4 + -
5 {n
6 << >>
7 > < >=<= S> S> S>= S<=
8 =<>
9 &
10 A
11 |
12 &&
13 Il

As an example, the expression:

3+5*6

Evaluatesto 33 since the multiplication is performed first. It may be beneficial to use
grouping to show which operations are performed first. Grouping is simply starting
an expression with '(" and ending with *)'. Therefore, the expression 3+5*6 is
equivaent to 3+(5*6). Grouping is very important if you want to override the default
behavior and have one piece of the expression evaluated first. Therefore, to make sure
the + is evaluated first, the expression is written as (3+5)* 6, for aresult of 48.

20 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Numeric Formats

Numeric (Integer) constants may be expressed in three formats; decimal,
hexadecimal, or quoted character.

Decimal constants are specified by writing adecimal number. Hexadecimal constants
are specified by prefacing the hex constant by Ox. Quoted character constants are a
single character placed between single quotes (*) and have the numeric value
specified on an ASCII chart.

Example:
INTEGER 1I;
1=123; // Specify Decimal constant.
1=0xABC; // Specify a Hexadecimal constant (Decimal value

2748)
I="A"; // Specify a character constant (Decimal value 65)
INTEGER K;

K=54; // Specify Decimal constant

K=0x36; // Specify a Hexadecimal Constant (Decimal
// Value 54)

K="6"; // All three of these are the same value
// (Decimal value 54)

The three forms may be used interchangeably and are used to make code more

readable.

Example:
STRING A$[10]., B$[10], C$[10];:
INTEGER 1I;

BUFFER_INPUT COM_IN$[50];

// A%, B$, and C$ contain identical values

// after these lines run.

A$=CHR("A");

B$=CHR(65) ;

C$=CHR(0x41);

// Preserve the lower nibble of a word, mask the rest out.
I = VAL1 & OxOO0OF;

// Read until a comma is detected in the stream.
DO

{

I = GetC(COM_IN$)

s
UNTIL (I = ",7);

Language Reference Guide - DOC. 5797G SIMPL+® @ 21

Software Crestron SIMPL+®

Task Switching

Task Switching for X-Generation (CNX) Control Systems

Each SIMPL+ module runs as a separate task in the X-Generation (CEN-TVAV,
CNMSX-AV/PRO, CNRACKX/-DP) Control System. In order to insure that no
SIMPL + program takes up too much time, each task is allotted a certain amount of
timeto run. If the task exceeds this time limit, the system will switch out and allow
other tasks (including the SIMPL program) to run.

The system will not arbitrarily switch out at any point in time. Even if the task limit
is exceeded, the system will force atask switch only at predetermined points.

The system will perform atask switch when a PROCESSLOGIC, DELAY, or

PUL SE function is encountered. When atask switch is performed, the output 1/0
definitions are updated (refer to ANALOG_OUTPUT, DIGITAL_OUTPUT,
STRING_OUTPUT for further information). Note that aWAIT does not cause atask
switch.

When aWHILE, DO-UNTIL, or FOR construct encountersits last statement, or any
construct that causes a* backwards branch”, the system checksto seeif atimeout has
occurred. If the timeout has occurred, then the system will task switch away. When
the moduleis given time to run, it will resume at the top of the construct.

For this reason, adesigner of a SIMPL + module should take care to design with this
inmind. A particular concernisif the outputs need to be updated in a specific fashion
and have aloop, which may potentially cause the system to switch away. One

solution would beto storethe output variablesin intermediate arrays or variables, and
assign the intermediate variables to the output variables before the event terminates.

Example:
DIGITAL_INPUT trig;
ANALOG_OUTPUT i;
INTEGER j;
PUSH trig
{
3=0;
FOR(j=0 to 32000)
{

I}
()

22 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

A SIMPL program drives the trig signal and monitors the state of the analog_output
with an ANALOG DEBUGGER (Speedkey: TEST2) symbol. If the system did not
task switch out, the only TEST2 output would show 32000. If this program wererun,
there would be many outputs, indicating each time the FOR loop exceeded the
alotted time, the SIMPL program would be given timeto run and the TEST 2 symbol
would post the results.

If it were critical that the anal og_output were only updated with the final value, the
following alternative solution could be used:
DIGITAL_INPUT trig;
ANALOG_OUTPUT 1i;
INTEGER j, q:
PUSH trig
{
3=0;
FOR(j=0 to 32000)
{

-
I}
o]

}

Thisprogram output would only show thefinal result; the TEST2 would betriggered
once with the value 32000. The system will still perform whatever task switching it
requires.

When an event hastask switched away, it ispossiblethat the event may beretriggered
and a new copy of the event will start running. Therefore, SIMPL+ events are
considered to be re-entrant. The event may be reentered only alimited number of
times before an Rstack overflow error occurs (refer to “Common Runtime Errors”
that begins on page 302). In order to prevent the event from running multiple times,
consider the following example:

DIGITAL_INPUT trig;
INTEGER 1;
PUSH trig
{
FOR(I = 0 TO 32000)
{
// code
}
3

This code will task switch away at some point in the FOR loop. If trig is hit again
while the event is task switched out, a new copy will run. This code can be changed
to prevent multiple copies from running.

DIGITAL_INPUT trig;
INTEGER 1, Running;
PUSH trig

{
IF(TRunning)

Language Reference Guide - DOC. 5797G

SIMPL+® @ 23

Software Crestron SIMPL+®

Running = 1;
FOR(I = 0 TO 32000)

{
// code

}

Running = 0;
s

H
FUNCTION MAINQ)

{

Running = 0;

}
In this case, anew variable, Running is declared and set to 0 on system startup in the
MAIN. When the event istriggered, if Running is 0, then it will be set to 1, and the
FOR loop will execute. Assume now the event has atask switch. If trig ishit again,
the event will start, but will immediately exit because | F statement eval uatesto false.
When the task resumes, and ultimately completes, Running will be set to 0 again so
the bulk of the function may execute again.

NOTE: Theevent isSTILL reentering. It isbeing forced to terminate immediately
0 and prevent reentry more than one level deep.

24 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Task Switching for 2-Series Control Systems

In the 2-Series Control Systems, each SIMPL+ module also runs as one or more
concurrent tasks in the control system. The MAIN and each event handler run as
separate tasks sharing a common global data space.

Toinsurethat no SIMPL + program takestoo much time, each task isallotted acertain
amount of timeto run. If the task exceeds thistime limit, the system will switch out
and allow other tasks (including the SIMPL program) to run. It should also be noted
that the task would run until it has completed the operation, the allotted time expires
or atask switching call is executed.

Unlike the X-Generation systems, the system will arbitrarily switch out at any point
in time. If this may result in undesirable behavior, then the programmer should
control histask switching by issuing a PROCESSL OGIC function.

The system will perform atask switch when aPROCESSL OGIC or DELAY function
isencountered. The PULSE will nolonger cause atask switch becauseit isno longer
needed for the logic processor to process the digital output pulse. Note that a WAIT
does not cause atask switch but will execute in its own task.

All outputs are processed by the logic processor as soon as assigned. As soon asthe
SIMPL + modul e releases the processor, al the outputs are seen by the logic
processor. Also, the programmer can read back DIGITAL_OUTPUTS and
ANALOG_OUTPUTS without having to insert a PROCESSL OGIC in between.

To use the example from the Task Switching for X-Generation Control System
discussion:
DIGITAL_INPUT trig;
ANALOG_OUTPUT 1;
ANALOG_OUTPUT NewNumber ;
INTEGER j;
PUSH trig
{
3=0;
NewNumber = 1234;
J = NewNumber; //j = 1234, not old value of NewNumber
FOR(j=0 to 32000)

{

1
[

}
}

A SIMPL program drivesthe trig signal and monitors the state of
ANALOG_OUTPUT with an ANALOG DEBUGGER (Speedkey: TEST2) symbol.
The TEST2 output would show all numbers from 0 to 32000. If it were critical that
the ANALOG_OUTPUT were only updated with the final value, the following
alternative solution could be used:

DIGITAL_INPUT trig;

ANALOG_OUTPUT 1i;

INTEGER j, q;:

Language Reference Guide - DOC. 5797G SIMPL+® @ 25

Software Crestron SIMPL+®

PUSH trig

{
J=0;
FOR(J=0 to 32000)
{

-
I}
o]

}

Thisprogram output would only show thefinal result; the TEST2 would betriggered
once with the value 32000. The system will still perform whatever task switching
required. Aswith the X-Generation series, re-entrance can till be a problem. When
an event hastask switched away, the event may be retriggered and anew copy of the
event will start running. Therefore, SIMPL + events are considered to be re-entrant.
The amount of timesthat this could occur is dependent upon the available memory in
the system. In order to prevent the event from running multiple times, refer to the re-
entrant example in the X-Generation task switching section.

The programmer should exercise caution when using looping constructs without
constraints (i.e. while(1)) or depend upon outside influence. Because each event will
run for the allotted time unless specified otherwise, PROCESSLOGIC calls should
be used to reduce the CPU overhead. Consider the following:

DIGITAL_INPUT dilnputl, dilnput2;
INTEGER 1, LastNumSeconds;
PUSH dilnputl

{
WHILE (dilnputl)
{
// do something
}
}
main()
{
LastNumSeconds = 0;
WHILE (1)
{
seconds = GetNumSeconds();
IF (seconds <> LastNumSeconds)
{
// do something
}
}
}

At the loop in MAIN, the programmer wants to perform an operation every second.
Thiscode will achievethat goal. However, aside effect of the codeisthat every time
thetask isscheduled to run, it will sitin avery tight loop checking for achangein the

26 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

number of seconds. Sincethe allotted timefor a SIMPL + task to run isin fractions of
asecond, it isvery unlikely to change during the alotted time. Unless the
programmer putsinaDELAY which will put thetask to “sleep” for aperiod of time,
this task will dominate the CPU time.

The programmer who writes the MAIN() function should a so be aware that the
MAIN() function begins running when the SIMPL Windows program isinitializing.
Themodul€' sinputs do not havetheir programmed state until sometime after thefirst
break in the program execution due either to a process logic statement or expiration
of atimedlice.

The PUSH event indicates amore subtle problem. The programmer wantsto loop in
the event until the input dilnputl is released. Once the task containing the event is
started, it will run for its allotted time and no other inputs will change. If the signal
attached to the dilnputl signal goeslow, the event will not see to the change until the
event switches out and the dilnputl low signal is processed.
Thefollowing is an alternative:

DIGITAL_INPUT dilnputl, dilnput2;

INTEGER 1, LastNumSeconds;

PUSH dilnputl

{

WHILE (dilnputl)

{
// do something

ProcessLogic();

}
3
MAINQO
{
LastNumSeconds = 0;
WHILE (1)
{
seconds = GetNumSeconds();
IF (seconds <> LastNumSeconds)

{
// do something

}
delay(10);
}
}

Here, a100msdelay isputinthe MAIN loop. That meansthat thetask will only wake
up 10-times per second. It will still catch the change of the seconds to within a1/10
of asecond and lessen system requirements.

The PROCESSLOGIC call inthe PUSH event handler will immediately cause atask
switch to be performed. Thiswill allow alow transition on the dilnputl signal to be
seen immediately, making the system more responsive.

Language Reference Guide - DOC. 5797G SIMPL+® @ 27

Software Crestron SIMPL+®

One more operational difference between the X-Generation and 2-Series control
systems s the event interaction. For example:

DIGITAL_INPUT diEventl, diEvent2;
PUSH diEventl
{
PRINT(“Starting Event 1\n”);
DELAY(500); // 5 sec delay
PRINT (“Event 1 done\n”);

b
PUSH diEvent2

{
PRINT (“Starting Event 2\n”’);
DELAY (1500); // 15 sec delay
PRINT (“Event 2 done\n”);

}
The output from the X-Generation system would be:
Starting Event 1
Starting Event 2
Event 2 Done
Event 1 Done

The order dictates that the second delay (15 seconds) will hold off the first delay. As
soon as the second delay has finished, the first delay is checked. Therefore, the two
events complete at approximately the same time (15 seconds).
The output from the 2-Series system would be:

Starting Event 1

Starting Event 2

Event 1 Done

Event 2 Done

The eventsrunindependently. When the 5-seconds expiresfor thefirst delay, thefirst
event continuesand printsits message. The second delay expires 10 secondslater and

the message is displayed.

28 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Language Constructs & Functions

Language Constructs & Functions Overview

Functions take one or more comma-separated parameters and return aresult. The
following template shows how each language construct and function is explained.

Name:

The name used to refer to the construct or function.

Syntax:

The SIMPL + specific language requirementsfor this particul ar construct or function.
This section demonstrates exactly how to enter the statement in a SIMPL + program.

For completeness, the general syntax for SIMPL+ functions is shown below:

<Return Value Type> FunctionName(<Parameter 1 Type> [,
<Parameter 2 Type> ...]);

The Types are described as STRING, INTEGER, LONG_INTEGER,
SIGNED_INTEGER, and SIGNED_LONG_INTEGER.

If aSTRING isspecified asareturn type, aSTRING or STRING_OUTPUT variable
may be used.

If an INTEGER or LONG_INTEGER is specified as areturn type, an INTEGER,
LONG_INTEGER, ANALOG_OUTPUT or DIGITAL_OUTPUT may be used.

If aSTRING is specified as a parameter, a STRING, STRING_INPUT,
BUFFER_INPUT or litera string (i.e. “Hello””) may be used.

If an INTEGER, LONG_INTEGER, SIGNED_INTEGER or
SIGNED_LONG_INTEGER is specified as a parameter, an INTEGER,
LONG_INTEGER, ANALOG_INPUT, ANALOG_OUTPUT, DIGITAL_INPUT
or DIGITAL_OUTPUT may be used. A literal integer (i.e. 100) may also be used.
Note that for DIGITAL_OUTPUT values, avaue of 0 is equivalent to digital low,
and any other valueisadigital high.

Description:

General overview of what this function does.

Parameters (applies to functions only):

Specifics on each of the parameters listed.

Language Reference Guide - DOC. 5797G SIMPL+® @ 29

Software

Crestron SIMPL+®

Return Value (applies to functions only):

Values placed in the return variable include error conditions. Error conditions are
resultsthat occur if one or more of theinput values does not have valuesthat are legal
for that function.

Example:
A code example of how this function istypically used.

Version:

The version of SIMPL+ in which the construct or function was made available and
any revision notes about differences between various versions of SIMPL+. All
constructs and functions are available in all subsegquent versions except where noted.

Control System:

The control system platform for which the function is valid. Unless specified, the
construct or function isvalid for both X-Generation (e.g., CEN-TVAV, CNMSX-
AV/PRO, CNRACK X/-DP) and 2-Series control systems. SIMPL+ is not available
in the control systems preceding the X generation - CNMS, CNRACK/-D/-DP,
CNLCOMP/-232, and ST-CP.

30 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Arrays

Various one and two dimensional arrays are supported. All input and output arrays
are 1-based, meaning that the first element hasindex 1, not 0. Internal variables are
0-based, meaning that thefirst element hasindex 0. In both cases, theindex of thelast
element is the same as the dimension of the array.

Do not confuse the declaration of the length of STRINGs with the declaration of
arrays. E.g. STRING s$[32] isasingle string of length 32, and STRING
ManyS$[10][32] isan array of 11 strings of length 32 each. Y ou must usethe BY TE
function to accessthe character at a particular position in astring, but you can usethe
array index to access aparticular string in an array of strings. Positionsin astring are
1-based. Refer to the discussion of Minimum Size Arraysin Declaration Overview
on page 45.

One dimensiona arrays of the following types are supported:
DIGITAL_INPUT
DIGITAL_OUTPUT
ANALOG_INPUT
ANALOG_OUTPUT
STRING_OUTPUT
BUFFER_OUTPUT
STRUCTURES

One dimensional arrays of strings are also supported, although since the declaration
also contains a string length, it looks like a 2-dimensional array:

STRING_INPUT
BUFFER_INPUT
STRING

One and two dimensiona arrays of the following types are supported:
INTEGER
LONG_INTEGER
SIGNED_INTEGER
SIGNED_LONG_INTEGER

Language Reference Guide - DOC. 5797G SIMPL+® @ 31

Software Crestron SIMPL+®

Declaration Examples:

DECLARATION MEANING
DIGITAL_INPUT in[10]; 10 digital inputs, in[1] to in[10]
INTEGER MyArray[10][20]; 11 rows by 21 columns of data, from

MyArray[0][0] to MyArray[10][20]

STRING PhoneNumbers[100][32]; 101 strings that are a maximum of 32
characters long, e.g. PhoneNumbers[0] to
PhoneNumbers[100]

STRING_INPUT in$[32]; One input string called in$ that is 32 characters
long.

STRING_OUTPUT out$[10]; Ten output strings, out$l to out$[10]. Their
length does not have to be specified.

STRING_INPUT in$[5][32]; Five input strings, in$[1] to in$[5] that are 32
characters long.

<struct_type> myStruct[10]; 11 structure elements from myStruct[0] to
myStruct[10].

32 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Directives

Compiler Directives Overview

Compiler directives are used by the SIMPL+ compiler to control attributes of the
symbol without generating the actual SIMPL+ code.

#CATEGORY

Name:
#CATEGORY

Syntax:
#CATEGORY “<category I1D>"

Description:

A Category isthe name of the folder in the Logic Symbols library tree where the
module is shown. To specify a category for a SIMPL+ module, the #CATEGORY
directive must be used with a category specified in the list shown in the SIMPL+
Editor. Just click "Edit" then "Insert Category” for alist of categories. Choose one
and the appropriate line of code is added to your SIMPL + program.

Example:

#CATEGORY “6” // Lighting

If acategory ID does not exist in the Symbol Tree Category list, the SIMPL + module
will default to the Miscellaneous category type.

Version:
SIMPL+ Version 3.00

Control System:
2-Seriesonly

Language Reference Guide - DOC. 5797G SIMPL+® @ 33

Software

Crestron SIMPL+®

#CRESTRON_LIBRARY

Name:
#CRESTRON_LIBRARY

Syntax:

#CRESTRON_LIBRARY “<Crestron Library Name>”

Description:
Directs the compiler to include code from a Crestron provided library. The module
name specified is the Crestron Library Filename without the CSL extension.

Example:

#CRESTRON_LIBRARY “Special Integer Functions”

Directsthe compiler toincludethe Crestron Library “ Special | nteger Functions.CSL”
from the Crestron SIMPL+ Archive.

Version:

SIMPL+ Version 3.00 - Global variables can no longer be declared within Crestron
Library (.cd) files.

SIMPL+ Version 2.00

34 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

#DEFAULT_NONVOLATILE

Name:
#DEFAULT_NONVOLATILE

Syntax:
#DEFAULT_NONVOLATILE

Description:

Program variables retain their value if hardware power islost. The compiler will
default all variables declared within the SIMPL+ module as nonvolatile. Individua
variables can use the Volatile keyword to override this default. See also
#DEFAULT_VOLATILE on page 36.

Example:

#DEFAULT_NONVOLATILE

Version:
SIMPL+ Version 3.00

Control System:
2-Seriesonly

Language Reference Guide - DOC. 5797G SIMPL+® @ 35

Software

Crestron SIMPL+®

#DEFAULT_VOLATILE

Name:
#DEFAULT _VOLATILE

Syntax:
#DEFAULT_VOLATILE

Description:

Program variables will not retain their value if hardware power islost. The compiler
will default al variables declared within the SIMPL + module as volatile. Individual
variables can use the Nonvolatile keyword to override this default. See also
#DEFAULT_NONVOLATILE on page 35.

Example:

#DEFAULT_VOLATILE

Version:
SIMPL+ Version 3.00

Control System:

2-Series only. On an X-generation system, al variables are non-volatile.

36 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

#DEFINE_CONSTANT

Name:
#DEFINE_CONSTANT

Syntax:

#DEFINE_CONSTANT <constant_name> <constant_value>

Description:

Definea<constant_value>that will be substituted anywherein the current sourcefile
where <constant_name> is used.

Example:

#DEFINE_CONSTANT ETX 0x03
INTEGER 1;
1=ETX;

Assigns the value of 0x03 to the variablel.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 37

Software

Crestron SIMPL+®

#HELP

Name:
#HELP

Syntax:

#HELP “<help text>”

Description:

Severa #HELP lines can be specified. When F1 is hit either on the symbol in the
Symbol Library, in either the Program View or the Detail view, the help text will be
displayed. If thisdirective or the #HELP_BEGIN ... #HELP_END directive is not
present, the help text shownis“NO HELP AVAILABLE". Notethat it is preferable
tousethe#HELP _BEGIN ... #HELP_END directives rather than #HELP sinceitis
easier to edit and read the code.

Example:

#HELP “This is line 1 of my help text”
#HELP “This is line 2 of my help text”

Version:
SIMPL+ Version 1.00

38 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

#HELP_BEGIN ... #HELP_END

Name:
#HELP BEGIN ... #HELP_END

Syntax:

#HELP_BEGIN
Help Text Line 1
Help Text Line 2
etc.

#HELP_END

Description:

The#HELP_BEGIN, #HELP_END pair makesit easier to create help sinceeach line
does not need a separate #HEL P directive. When F1is hit either on the symbol in the
Symbol Library, in either the Program View or the Detail view, the help text will be
displayed. If thisdirective or #HEL Pis not present, the help text shownis“NOHELP
AVAILABLE". Note that the text will show up exactly as typed between the begin/
end directives (including blank lines).

Example:

#HELP_BEGIN

This is help line 1.
This is help line 3.
#HELP_END

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 39

Software Crestron SIMPL+®

#HINT

Name:
#HINT

Syntax:

#HINT “Hint Text”

Description:

The #HINT shows up in the status bar and provides a short tactical clue asto the
function of the symboal, in the same way that Crestron-defined built-in symbols do. If
the hint is specified, it will be visible when the symbol is highlighted in the User
Modules section of the Symbol Library. The text shows up as the symbol name as it
is stored on disk, followed by acolon, followed by the text. For example, a symbol
with the name “My Symbol” might be stored on disk with the filename

MY SYM.USP. If the hint isspecified as#HINT “ Thisismy symbol!” then the status
bar will show “MY SYM.USP: Thisismy symbol!”. If no #HINT is specified, then
only the filename is shown.

Example:

#HINT “This module controls a CNX-PAD8 Switcher”

Version:
SIMPL+ Version 1.00

40 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

#IF_DEFINED ... #ENDIF

Name:
#IF_DEFINED ... #ENDIF

Syntax:

#1F_DEFINED <constant_name>
<code>
#ENDIF

Description:

Results in compilation of the <code> only if <constant_name> has previously been
defined. Thisconstruct isgenerally useful for putting in code for debugging purposes,
giving the ability to easily turn the debugging on and off during compilation.

Example:

#DEFINE_CONSTANT DEBUG 1
DIGITAL_OUTPUT OUTS$;

INTEGER 1I;

FOR(1=0 to 20)

{

#1F_DEFINED DEBUG

PRINT(“Loop index 1 = %d\n”, 1);
H#ENDIF

OUT$ = ITOA(I);

}

The value of theloop is printed only if the DEBUG constant is defined. In order to
prevent compilation of the code, delete the line that defines the constant or comment
it out.

Version:
SIMPL+ Version 2.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 41

Software Crestron SIMPL+®

#SYMBOL_NAME

Name:
#SYMBOL_NAME

Syntax:
#SYMBOL_NAME ““<name of symbol>"

Description:

By specifying <name of symbol>, thisnamewill show up on the header of the symbol
in the detail view aswell asin the USER SIMPL + section of the Symbol Library. If
thisdirective is not present, the default name shown in the Symbol Library/Program
View/Detail view is the name of the USP file as saved on disk. For example, if the
fileis saved as “ Checksum Program.USP”, the tree views will show “Checksum
Program” as the name.

Example:

#SYMBOL_NAME “My SIMPL+ Program”

Version:
SIMPL+ Version 1.00

42 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

#USER_LIBRARY

Name:
#USER_LIBRARY

Syntax:

#USER_LIBRARY “<User Library Name>”

Description:

Directs the compiler to include code from a User written library. The module name
specifiedistheUser Library Filenamewithout the USL extension that isused by User
Libraries. Pathnames are not allowed as the USL modules are stored in the User
SIMPL + path (refer to Edit | Preferences | Pathsin SIMPL Windows). User libraries
can be created by saving a SIMPL+ module astype SIMPL+ library, instead of the
default type SIMPL + file.

Example:

#USER_LIBRARY “My Functions”
Directsthe compiler to include the User Library “My Functions.USL” from the User
SIMPL + directory.
Version:

SIMPL+ Version 3.00 - Global variables can no longer be declared within User
Library (.ud) files.

SIMPL+ Version 2.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 43

Software Crestron SIMPL+®

#IF_NOT_DEFINED ... #ENDIF

Name:
#IF_NOT_DEFINED ... #ENDIF

Syntax:
#IF_NOT_DEFINED <constant_name>

<code>
#ENDIF

Description:

Results in compilation of the <code> only if <constant_name> has not been
previously defined. This construct is generally useful for putting in code for
debugging purposes, giving the ability to easily turn the debugging on and off during
compilation.

Example:

#DEFINE_CONSTANT DEBUG 1
DIGITAL_OUTPUT OUTS$;
INTEGER 1I;

FOR(1=0 to 20)

{

#1F_DEFINED DEBUG
PRINT(“Loop index 1 = %d\n”, 1);
H#ENDIF
#1F_NOT_DEFINED_DEBUG

OUT$ = ITOA(D);

#ENDIF

}

The value of theloop isonly printed if the DEBUG constant is defined. The output
OUT$ isonly generated if the debug constant is not defined (if debug mode is not
turned on). In order to generate “release” code, the debug constant can be deleted or
commented out.

Version:
SIMPL+ Version 2.00

44 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Declarations

Declarations Overview

Declarations control the name, type, and number of inputs and outputs on a SIMPL +
symbol. The nameis shown as a cue on the symbol in SIMPL Windows and is used
asthe variable namein the body of the SIMPL + program. When the symbol isdrawn
in SIMPL Windows, the inputs are shown in the order of DIGITAL_INPUTS,
ANALOG_INPUTSs, STRING_INPUTs. The outputs are shown in the order of
DIGITAL_OUTPUTs, ANALOG_OUTPUTSs, STRING_OUTPUTs. When
specifying a declaration, several variable names can be put after a declaration or
multiple declaration statements may be used.

For example:

ANALOG_INPUT vall, val2, val3;

isequivaent to:

ANALOG_INPUT vall, val2;
ANALOG_INPUT val3;

Allowable I/O List Combinations

SIMPL+ Version 2.00 and later gives the ability to define arraysin the Input/Output
Lists. SIMPL+ version 3.01 and later introduced the ability to declare multiple fixed-
size arrays in the input/output lists, and a minimum expanded size to variable-size
arrays.

The following are the allowable combinations:
e Zeroor more DIGITAL_INPUTs
Zeroor more DIGITAL_INPUT arrays, thelast isvariable-size, the othersare
fixed-size.
e Zeroor more ANALOG_INPUTs, STRING_INPUTSs, or BUFFER_INPUTSs
in any combination.

e Zeroor more ANALOG_INPUT, STRING_INPUT, or BUFFER_INPUT
array, the last is variable-size, the others are fixed-size.

e Zeroor more DIGITAL_OUPUTs
e Zeroor more DIGITAL_OUTPUT array, the last is variable-size, the others
arefixed-size.

e Zeroor more ANALOG_OUTPUTs, STRING_OUTPUTsIin any
combination.

e Zeroor more ANALOG _OUTPUT or STRING_OUTPUT array, thelast is
variable-size, the others are fixed-size.

Language Reference Guide - DOC. 5797G SIMPL+® @ 45

Software Crestron SIMPL+®

Fixed and Variable Size Arrays

Although SIMPL+ symbols can only handle one variable size DIGITAL_INPUT
array, one variable-size DIGITAL_OUTPUT array, one variable-size ANALOG/
STRING/BUFFER input array, and one variable size ANALOG/STRING/OUTPUT
array, it is convenient to be able to refer to other inputs and outputs with array
notation. Therefore, SIMPL + allows an unlimited number of fixed-size input or
output arrays, that are essentially single input or output values but array notation can
be used. Every member of these fixed-size arraysis aways shown in the symbol. All
arrays, except thelast one of each kind, arefixed-size arrays. Thelast oneisvariable-
size, meaning that the symbol initially showsthefirst array value. The user can press
ALT+ to expand the symbol to its maximum number of array inputs or outputs. In
addition, aminimum size can be declared in al variable-size arrays, meaning that the
minimum number of array membersis always shown, not just the first one, and the
array can be expanded from there.

minimum array size is specified on any array, but it is the last one within any type, it

ﬁ NOTE: The minimum array size number must be from 1 to the size of the array. If a
will be acompile error.

Example:
DIGITAL_INPUT YesVotes[10]
DIGITAL_INPUT NoVotes[10}
DIGITAL_INPUT AbstainVotes[10,5];

The symbol will show 10 digital inputs labelled: YesVoteq 1], YesvVoteg 2]
...YesVoteq[10], followed by 10 more labelled: NoVoteg[1], NoVoteg[2]
...NoVoteq 10], followed by 5 labelled: AbstainVoteg[1], AbstainV oteg[2]
...AbstainVoteg 5]. Y ou can continue to expand the last one up to AbstainV oteq[10].

Predefined Names:

Thenames"on" and "off" are reserved. Assigning "on" to avariable setsthe variable
to 1, assigning "off" setsthat variable to 0.

The following shows equivalent, given that VALUE isaDIGITAL_OUTPUT:
VALUE = 1; and VALUE
VALUE = O; and VALUE

on;
ofT;

46 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

ANALOG_INPUT

Name:
ANALOG_INPUT

Syntax:
ANALOG_INPUT <varl>[,<var2>...];
ANALOG_INPUT <var([size]>;
ANALOG_INPUT <var[size[,<min>]]>

Description:

Routes anal og inputs from the outside SIMPL program into a SIMPL + program with
the specified variable names. ANALOG_INPUT valuesare 16-bit numbers. They are
treated as signed or unsigned valuesinside of a SIMPL+ program depending on the
operators or functions being used.

NOTE: ANALOG_INPUT variables may not be passed to functionsin VVersion 3.00
for the 2-Series Control Systems. If you need to passan ANALOG_INPUT variable
to afunction, assign it to alocally declared variable and pass that variable to the
function.

NOTE: <min> isthe number of inputs shown at aminimum in SIMPL Windows. The

Default is 1. The user can expand the minimum up to the full size. Only the last array
of atype can have <min>. Refer to Arrays on page 31, and Declarations on page 45.

For an array of ANALOG_INPUTS, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

Example:
ANALOG_INPUT rampl;

Signifiesthat one analog input is coming into the SIMPL + program from the SIMPL
Program.

ANALOG_INPUT light_levels[25];

Signifiesthat up to 25 analog inputs are coming into the SIMPL + program from the
SIMPL Program, referenced aslight_level§[1] through light_level[25]. Oneis
shown as a minimum but the symbol input can be expanded by the user up to 25.

ANALOG_INPUT temp_set pts[20,4];

Signifiesthat up to 20 analog inputs exist, referenced as temp_set_pts[1] through
temp_set_ptg20]. Four are shown at a minimum, and the symbol inputs can be
expanded by the user up to 20.

Version:
SIMPL+ Version 2.00 for ANALOG_INPUT arrays, 3.01 for fixed arrays and
minimum sizes.
SIMPL+ Version 2.00 for ANALOG_INPUT arrays.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 47

Software Crestron SIMPL+®

ANALOG_OUTPUT

Name:
ANALOG_OUTPUT

Syntax:
ANALOG_OUTPUT <varl>[,<var2>...];
ANALOG_OUTPUT <var[size]>;
ANALOG_OUTPUT<var[size[,<min>]]>;

Description:

Routes avalue from the SIMPL+ program to the SIMPL program as an analog value.
ANALOG_OUTPUT values are 16-bit numbers. They are treated as signed or
unsigned valuesinside of aSIMPL + program depending on the operators or functions
being used. Refer to the discussion on Arrays on page 46.

NOTE: ANALOG_OUTPUTs may be jammed with other analog values from a
SIMPL program (i.e., from aRAMP or other analog logic, even other SIMPL +
symbols). When such an output is jammed, the new value is read back into the
SIMPL + symbol and the value of the output is altered.

NOTE: <min> is the number of outputs shown at aminimum in SIMPL Windows.
The Default is 1. The user can expand the minimum up to the full size. Only the last
array of atype can have <min>. Refer to Arrays on page 31, and Declarations on

page 45.

In X-Generation Control Systems, thelogic process only seesthe last anal og that was
posted after the SIMPL + modul e tasks switched away. Therefore, in aloop that
iteratesfrom 1 to 10000, only afew of the valueswill be seen by the logic process. If
all values should be seen to by the logic process, a PROCESSL OGIC statement is
required after the assignment to the ANALOG_OUTPUT.

When the SIMPL + program writes to the ANALOG_OUTPUT, the new value is
posted immediately. Therefore, if the valueisread back after being assigned, the new
valueisread back (unlikeaDIGITAL_OUTPUT on X-Generation control systems).

In the 2-Series Control Systems, the logic process sees ALL valuesthat are assigned
to the ANALOG_OUTPUT. No PROCESSLOGIC isrequired.

For an array of ANALOG_OUTPUTS, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

48 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:

ANALOG_OUTPUT LEVEL;
Signifiesthat one analog input is being sent from the SIMPL + program to the SIMPL
program.

ANALOG_OUTPUT LEVELS[25];

Signifiesthat up to 25 analog outputs, referred to as LEVEL S 1] through
LEVEL §25] are being sent from the SIMPL + program to the SIMPL program.

ANALOG_OUTPUT LEVELS[25,5];
Signifies same as above, except that aminimum of 5 are shown at any time.

NOTE: If LEVEL or any of the elementsfrom LEVEL Sisjammed from outside the
9 symbol, it will take on that new jammed value.
NOTE: Y ou should useisSignal Defined to test whether the output is connected to an

actual signal in the SIMPL Windows program before assigning avalueto it. If you
assign avalue and thereis no signal, amessage is placed in the system error log.

Version:
SIMPL+ Version 3.01 - Fixed size arrays and minimum sizes.

SIMPL+ Version 3.00 - Can no longer be passed to functions by reference. (2-Series
Control Systems only)

SIMPL+ Version 2.00 for ANALOG_OUTPUT arrays.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G SIMPL+® @ 49

Software Crestron SIMPL+®

BUFFER_INPUT

Name:
BUFFER_INPUT

Syntax:
BUFFER_INPUT <varl[max_length]>[,<var2[max_length]>...];
BUFFER_INPUT <var[size][max_length]>;
BUFFER_INPUT<var[size[,<min>]][max_length]>;
Description:

Routes serial inputsfrom the outside SIMPL program into a SIMPL+ program under
the specified variable names. Thisis used when a seria string coming from a
communications port needs to be processed by a SIMPL + program. When new data
comesinon a BUFFER_INPUT, the data is appended to the end of a
BUFFER_INPUT. If the buffer isfull, the contents are shifted up and the new datais
appended to the end. This differs from STRING_INPUTSsin that new data entering
into a STRING_INPUT variable replaces the previous string contents.
BUFFER_INPUTs may be processed with string handling functions. The GETC
function may be used to read a character from the beginning of the buffer and shift
the contents up by 1. Buffer inputs may be written to, so their data space may be used
as a storage spot for doing something such as parsing through a string without
declaring temporary storage. Refer to the discussion on arrays on page 46.

NOTE: BUFFER_INPUT variables may not be passed to functionsin Version 3.00
for the 2-Series Control Systems. If you need to passaBUFFER_INPUT variable to
afunction, assignittoalocally declared variable and passthat variableto the function.

NOTE: <min> isthe number of inputs shown at aminimumin SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of atype can have <min>. Refer to Arrays on page 31, and Declarations on page 45.

MAX_LENGTH may be avalue up to 255 in SIMPL+ Version 1.00. SIMPL+
Version 2.00 and later allow for MAX_LENGTH to be up to 65535. For an array of
BUFFER_INPUTS, the maximum value of SIZE is 65535. Valid indicesare 1
through the specified size.

Example:

BUFFER_INPUT FromComPort[100];

Signifiesthat a 100 character buffer with the name “FromComPort” is specified asa
BUFFER_INPUT.

BUFFER_INPUT ComBuffers[2][100];

Signifiesthat two 100 character buffers have been set up that may be referenced with
the names ComBufferg 1] through ComBufferg2].

BUFFER_INPUT ComBuffers[2,2][100];
Same as above except both are always shown on the symbol.
Version:

SIMPL+ Version 3.01 for fixed size arrays and minimum sizes.
SIMPL+ Version 2.00 for BUFFER_INPUT arrays and MAX_LENGTH to 65535.
SIMPL+ Version 1.00 for everything else.

50 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

DIGITAL_INPUT

Name:
DIGITAL_INPUT

Syntax:

DIGITAL_INPUT <varl>[,<var2>...];
DIGITAL_INPUT <var[size]>;
DIGITAL_INPUT <var[size[,min]]>;

Description:

Routesdigital inputsfromthe outside SIMPL programinto aSIMPL + program under
the specified variable names. DIGITAL_INPUT valuesare either O (digital low) or 1
(digital high). Refer to the discussion on arrays on page 46.

NOTE: DIGITAL_INPUT variables may not be passed to functionsin Version 3.00
for the 2-Series Control Systems. If you need to passaDIGITAL_INPUT variableto
afunction, assignit toalocally declared variable and passthat variableto the function.

NOTE: <min> isthe number of inputs shown at aminimum in SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of atype can have <min>. Refer to Arrays on page 31, and Declarations on page 45.

For an array of DIGITAL_INPUTS, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

Example:

DIGITAL_INPUT osc_in, toggle_ in;

Signifiesthat two digital inputs are coming into the SIMPL + program from the
SIMPL Program.

DIGITAL_INPUT status bits[8];

Signifiesthat up to eight digital inputsare coming into the SIMPL + program from the
SIMPL Program, referenced under the names status _bitg[1] through status_bitg[8].

DIGITAL_INPUT flags[8.,2];
Signifies up to eight digital inputs, with at |east two shown.

Version:
SIMPL+ Version 3.01 for fixed arrays and minimum sizes.
SIMPL+ Version 2.00 for DIGITAL_INPUT arrays.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G SIMPL+® @ 51

Software Crestron SIMPL+®

DIGITAL_OUTPUT

Name:
DIGITAL_OUTPUT

Syntax:

DIGITAL_OUTPUT <varl>[,<var2>...];
DIGITAL_OUTPUT <var[size]>;
DIGITAL_OUTPUT <var[size[,<min>]]>;

Description:

Routes a value from the SIMPL+ program to a SIMPL program. If avalue different
fromOisplaced on aDIGITAL_OUTPUT, thedigital signal in the SIMPL program
is set high when the control system processes the logic.

Refer to the discussion on arrays on page 46.

NOTE: DIGITAL_OUTPUTs may be jammed with other digital values from a
SIMPL program (i.e., from a BUFFER or other jammable digital logic, even other
SIMPL + symbols). When such an output is jammed, the new value is read back into
the SIMPL + symbol and the value of the output is altered.

NOTE: <min> isthe number of outputs shown at aminimum in SIMPL Windows.
The Default is 1. The user can expand the minimum up to the full size. Only the last
array of atype can have <min>. Refer to Arrays on page 31, and Declarations on
page 45.

NOTE: Y ou should useisSignal Defined to test whether the output is connected to an
actual signal in the SIMPL Windows program before assigning avalueto it. If you
assign avalue and thereis no signal, amessage is placed in the system error log.

In X-Generation Control Systems, if anew valueis assigned to the
DIGITAL_OUTPUT from the SIMPL+ program, the value read back from it within
the SIMPL + program will have the original state until thelogic is serviced. For
example, if aDIGITAL_OUTPUT has avalue of 0, and the value 1 iswritten to it,
the value read back will be O until the system processes the rest of the logic attached
to that SIMPL+ symbol. Thisisunlikean ANALOG_OUTPUT. If every change of
aDIGITAL_OUTPUT isrequired to be seen by the logic, a PROCESSLOGIC
statement is required after the assignment to the DIGITAL_OUTPUT.

In the 2-Series Control Systems, the logic process sees ALL vauesthat are assigned
tothe DIGITAL_OUTPUT. No PROCESSLOGIC isrequired. Asan example, if the
following codeis used in the 2-Series Control Systems:

DIGITAL_OUTPUT Statel;

Statel=1;

Statel=0;
Thelogic will end up seeing a short pulse.

For an array of DIGITAL_OUTPUTS, the maximum vaue of SIZE is 65535. Valid
indices are 1 through the specified size.

52 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:

DIGITAL_OUTPUT Statel, State2;

Signifiesthat two digital signals are to be sent to a SIMPL program from this
SIMPL+ program.

NOTE: For example, if Statel isjammed high viaa BUFFER from outside the
SIMPL + program, the value of Statel becomes 1 and should be handled accordingly
in the SIMPL+ code.

DIGITAL_OUTPUT state_bits[3];

Signifiesthat up to three digital signals areto be sent to a SIMPL program from this
SIMPL + program. The names are referred to as state_bitg[1] through state_bitg[3].
The same jamming rules apply as in the previous example.

DIGITAL_OUTPUT state bits[3,3];
Same as above except all three are always shown on the symbol.

Version:
SIMPL+ Version 3.01 - Fixed arrays and minimum sizes.

SIMPL+ Version 3.00 - can no longer be passed to functions by reference. (2-Series
Control Systems only)

SIMPL+ Version 2.00 for DIGITAL_OUTPUT arrays.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G SIMPL+® @ 53

Software

Crestron SIMPL+®

INTEGER

Name:
INTEGER

Syntax:

INTEGER <varl>[,<var2>...];
INTEGER <varl>[size] [,<var2>[size].];
INTEGER <varl>[rowsl][columnsl] [,<var2>[rows2][columns2]..];

Description:

The first form declares an integer value that is local to this SIMPL+ program.
INTEGER valuesare 16-hit quantitiesand aretreated the sameasANALOG_INPUT
values and range from 0-65535.

The second form declares a one-dimensional array of INTEGER values.

The third form declares atwo-dimensional array of INTEGER values. A two-
dimensional array can be thought of as atable or matrix.

The valuesfor SIZE, ROWS, and COLUMNS may be up to 65535.

An INTEGER array element may be used anywhere an INTEGER islegal. Array
elements are referenced by using the name followed by [element] for one-
dimensional arraysor [element1][element?] for two-dimensional arrays. Theelement
number may range from 0 to the element size. For example, if an array is declared as
NUM[2], then legal elements are NUM[0], NUM[1], and NUM[2]. The bracket
notation is often called an array subscript.

NOTE: (X-Gen) The values of INTEGERSs declared outside of functions are non-
volatile. If the system is powered down and up, the variables will take the previous
values. If programs are changed and uploaded, the values are not preserved.

NOTE: (2-Series) INTEGERSs can be volatile or non-volatile. The default is defined
using the compiler directives#DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.

NOTE: If no RETURN statement is encountered, the function automatically returns
ao.

54 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:
INTEGER temp_level;
Specifies one locally declared INTEGER in this SIMPL+ program

INTEGER CommandBytes[2];

Specifies an array of three INTEGERS that can be referenced under the name
CommandBytes. In pictoria form, it appears as:

| CommandBytes[0] ‘ CommandBytes[1] ‘ CommandBytes[2] ‘

INTEGER Matrix[4]1[3]:
Specifies atwo-dimensional array of integers five rows deep by four columns wide.
In pictorial form, it appears as.

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]
Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]
Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]
Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]
Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:

9 INTEGER location[5], room;
room = 2;

location[room] = 10;

Version:
SIMPL+ Version 1.00
SIMPL+ Version 2.00 alowed INTEGER to be declared inside of functions.

Language Reference Guide - DOC. 5797G SIMPL+® @ 55

Software Crestron SIMPL+®

LONG_INTEGER

Name:
LONG_INTEGER

Syntax:

LONG_INTEGER <varl>[,<var2>...];
LONG_INTEGER <varil>[size] [,<var2>[size]..];
LONG_INTEGER <varl>[rowsl][columnsil]
[,<var2>[rows2][columns2]..];

Description:

Thefirst form declares along value that islocal to this SIMPL+ program.
LONG_INTEGER values are 32-bit quantities ranging from 0-4294967296.

The second form declares a one-dimensional array of LONG_INTEGER values.

The third form declares atwo-dimensional array of LONG_INTEGER values. A
two-dimensional array can be thought of as a table or matrix.

The valuesfor SIZE, ROWS, and COLUMNS may be up to 65535.

A LONG_INTEGER array element may be used anywhere aLONG_INTEGER is
legal. Array elements are referenced by using the name followed by [element] for
one-dimensional arrays or [element1][element2] for two-dimensional arrays. The
element number may range from 0 to the element size. For example, if an array is
declared as NUM[2], then legal elements are NUM[0Q], NUM[1], and NUM[2]. The
bracket notation is often called an array subscript.

NOTE: (2-Series) LONG_INTEGERs can be volatile or non-volatile. The default is

defined using the compiler directives#DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.

56 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:
LONG_INTEGER temp_level;
Specifies one locally declared LONG_INTEGER in this SIMPL+ program

LONG_INTEGER CommandBytes[2];

Specifiesan array of three LONG_INTEGERsthat can be referenced under the name
CommandBytes. In pictoria form, it appears as:

‘ CommandBytes[0] ‘ CommandBytes[1] | CommandBytes[2] ‘

LONG_INTEGER Matrix[4][3]:

Specifies atwo-dimensional array of LONG_INTEGERS five rows deep by four
columns wide.

In pictorial form, it appears as.

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]
Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]
Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]
Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]
Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:

ﬁ LONG_INTEGER location[5], room;
room = 2;

location[room] = 10;

Version:
SIMPL+ Version 3.00.01

Control System
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 57

Software Crestron SIMPL+®

SIGNED_INTEGER

Name:
SIGNED_INTEGER

Syntax:

SIGNED_INTEGER <varl>[,<var2>...];
SIGNED_INTEGER <varl>[size] [,<var2>[size].];
SIGNED_INTEGER <varl>[rowsl][columnsl]

[,<var2>[rows2][columns2]..];

Description:

The first form declares an integer value that is local to this SIMPL+ program.
SIGNED_INTEGER values are 32-bit quantities ranging from -32678 to 32767.

The second form declares a one-dimensional array of SIGNED_INTEGER values.

The third form declares atwo-dimensional array of SIGNED_INTEGER values. A
two-dimensional array can be thought of as a table or matrix.

The valuesfor SIZE, ROWS, and COLUMNS may be up to 65535.

A SIGNED_INTEGER array element may be used anywhere an
SIGNED_INTEGER islegal. Array elements are referenced by using the name
followed by [element] for one-dimensional arrays or [element1][element?2] for two-
dimensional arrays. The element number may range from 0 to the element size. For
example, if an array is declared as NUM[2], then legal elements are NUM[(],
NUM[1], and NUM[2]. The bracket notation is often called an array subscript.

NOTE: (2-Series) SSIGNED_INTEGERs can be volatile or non-volatile. The default

is defined using the compiler directives#DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.

58 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:
SIGNED_INTEGER temp_level;
Specifies one locally declared SIGNED_INTEGER in this SIMPL+ program

SIGNED_INTEGER CommandBytes[2];

Specifies an array of three SIGNED_INTEGERS that can be referenced under the
name CommandBytes. In pictorial form, it appears as:

‘ CommandBytes[0] ‘ CommandBytes[1] ‘ CommandBytes[2] ‘

SIGNED_INTEGER Matrix[4][3];

Specifiesatwo-dimensional array of integersfive rowsdeep by four columns
wide. In pictoria form, it appears as.

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]
Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]
Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]
Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]
Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:
0 SIGNED_INTEGER location[5], room:

room = 2;

location[room] = 10;

Version:
SIMPL+ Version 3.00.06

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 59

Software

Crestron SIMPL+®

SIGNED_LONG_INTEGER

Name:
SIGNED_LONG_INTEGER

Syntax:

SIGNED_LONG_INTEGER <varl>[,<var2>._..];
SIGNED_LONG_INTEGER <varl>[size] [,<var2>[size].];
SIGNED_LONG_INTEGER <varl>[rowsl][columnsl]

[,<var2>[rows2][columns2]..];

Description:

Thefirst form declares along value that islocal to this SIMPL+ program.
SIGNED_|L ONG_INTEGER values are 32-bit quantities ranging from -
2,147,483,647 to 2,147,483,647.

The second form declares a one-dimensional array of SIGNED_LONG_INTEGER
values.

The third form declares atwo-dimensional array of SIGNED_LONG_INTEGER
values. A two-dimensional array can be thought of as atable or matrix.

The valuesfor SIZE, ROWS, and COLUMNS may be up to 65535.

A SIGNED_LONG_INTEGER array element may be used anywhere a
SIGNED_LONG_INTEGER islegal. Array elements are referenced by using the
name followed by [element] for one-dimensional arrays or [element1][element2] for
two-dimensional arrays. The el ement number may range from 0 to the element size.
For example, if an array isdeclared as NUM[2], then legal elements are NUM[Q],
NUM[1], and NUM[2]. The bracket notation is often called an array subscript.

NOTE: (2-Series) SIGNED_LONG_INTEGERs can bevolatile or non-volatile. The
default is defined using the compiler directives#DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.

60 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:
SIGNED_LONG_INTEGER temp_level;
Specifiesonelocally declared SIGNED_LONG_INTEGER in this SIMPL + program

SIGNED_LONG_INTEGER CommandBytes[2];

Specifies an array of three SIGNED_LONG_INTEGERSs that can be referenced
under the name CommandBytes. In pictorial form, it appears as.

‘ CommandBytes[0] ‘ CommandBytes[1] ‘ CommandBytes[2] ‘

SIGNED_LONG_INTEGER Matrix[4]1[3];

Specifies atwo-dimensional array of SSIGNED_LONG_INTEGERS five rows deep
by four columns wide.

In pictorial form, it appears as.

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]
Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]
Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]
Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]
Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:

9 SIGNED_LONG_INTEGER location[5], room:
room = 2;

location[room] = 10;

Version:
SIMPL+ Version 3.00.06

Control System
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 61

Software Crestron SIMPL+®
STRING
Name:
STRING
Syntax:
STRING <varl[sizel]>[,<var2[size2]>...];
STRING <varl[num_elementsl][num_charactersl]>[,
<var2[num_elements2][num_characters2]>...];
Description:
Declaresastring that islocal to this SIMPL+ program. Stringsare of arbitrary length,
S0 amaximum size must be specified. When a STRING variable has new data
assigned to it, the old dataislost.
NOTE: Stringsin Version 3.00 for the 2-Series Control Systems may not be passed
by value to a function. They must be passed by reference.
NOTE: If no Return Valueis specified within an String_Function, then an empty
string (0) will be returned by default.
When used in its second form, a one-dimensional array of stringsis allocated. The
array hasnum_elements+1 elements, and num_characters per element allocated. The
legal indicesfor referencing the strings are O through num_elements.
Thevaue of SIZE and NUM_CHARACTER may beup to 255in SIMPL+ Version
1.00. In SIMPL+ Version 2.00 and later, they may be up to 65535. The value of
NUM_ELEMENTS may be up to 65535.
NOTE: (X-Gen) The values of STRINGSs declared are non-volatile. If the system is
powered down and up, the variableswill take ontheir previousvalues. If programsare
changed and uploaded, the values are not preserved.
NOTE: (2-Series) STRINGs can be volatile or non-volatile. The default is defined
using the compiler directives#DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.
62 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:

STRING temp$[10];

Signifiesthat onelocal STRING is declared in this SIMPL+ program.
STRING temp$[2][10];

Signifiesthat three strings of 10 characters long have been allocated.

To assign values, the following would be legal :
temp$[0]="Vall”;

temp$[1]="Vval2”;
temp$[2]="Val3”;

Version:
SIMPL+ Version 2.00 for SIZE and NUM_CHARACTER up to 65535.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G SIMPL+® @ 63

Software

Crestron SIMPL+®

STRING_INPUT

Name:

STRING_INPUT
Syntax:
STRING_INPUT <varl[max_sizel]>[,<var2[max_size2]>...];
STRING_INPUT <var[size][max_size]>;
STRING_INPUT <var[size[,<min>]][max_size]>;
Description:
Routes serial inputs from the outside SIMPL program into a SIMPL + program under
the specified variable names. Strings are of arbitrary length, so amaximum size must
be specified. Upon receiving new data, the valueis cleared and the new string is put
in. Strings received greater than the specified size are truncated to the size in the
declaration. String inputs may be written to, so their data space may be used as a

storage spot for doing something such as parsing through a string without declaring
temporary storage. Refer to the discussion on arrays on page 46.

NOTE: STRING_INPUT variables may not be passed to functionsin Version 3.00
for the 2-Series Control Systems. If you need to passa STRING_INPUT variable to
afunction, assignit toalocally declared variable and passthat variableto thefunction.

NOTE: <min> isthe number of inputs shown at aminimumin SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of atype can have <min>. Refer to Arrays on page 31, and Declarations on page 45

Thevaue of SIZE and NUM_CHARACTER may be up to 255in SIMPL+ Version
1.00. In SIMPL+ Version 2.00 and later, they may be up to 65535. For an array of
STRING_INPUTS, the maximum value of SIZE is 65535.

Example:

STRING_INPUT FirstName[100], SecondName[25];

Signifiesthat two serial inputsare coming into the SIMPL + program from the SIMPL
Program. The first one may only be a maximum of 100 characters, the second may
only be amaximum of 25 characters. If an input islonger than the specified length,
everything after the specified limit islost.

STRING_INPUT DataBaseNames[9][100];

Signifiesthat 9 seria inputs are coming into the SIMPL+ program from the SIMPL
program. Each name has a 100 character limit. The names are referenced as
DataBaseNames[1] through DataBaseNameq[9].

STRING_INPUT Database Names [9,3][100];
Same as above except at |east three are shown at all times.

Version:

SIMPL+ Version 3.01 for fixed arrays and minimum sizes.

SIMPL+ Version 2.00 for STRING_INPUT arraysand SIZE, NUM_CHARACTER
to 65535.

SIMPL+ Version 1.00 for everything else.

64 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

STRING_OUTPUT

Name:
STRING_OUTPUT

Syntax:
STRING_OUTPUT <varl>[,<var2>...];
STRING_OUTPUT <var[size]>;
STRING_OUTPUT <var[size[,<min>]][size]>;

Description:

Routes serial strings from the SIMPL+ program to the SIMPL program. A string
length is not required as the output string buffer management is performed by the
operating system. Refer to the discussion on arrays on page 46.

NOTE: These outputs may be jammed with other seria string signalsin the SIMPL
9 program, although the value does not propagate back into the SIMPL+ symbol.

NOTE: The maximum string length for a STRING_OUTPUT is 255 characters.
Assigning a string with alength of more than 255 will result in aloss of data.

NOTE: Y ou should useisSignal Defined to test whether the output is connected to an
actua signal in the SIMPL Windows program before assigning avalueto it. If you
assign avalue and there is no signal, amessage is placed in the system error log.

NOTE: <min> isthe number of outputs shown at aminimum in SIMPL Windows.
The Default is 1. The user can expand the minimum up to the full size. Only the last
array of atype can have <min>. Refer to Arrays on page 31, and Declarations on

page 45.

Thevalue of aSTRING_OUTPUT cannot be read. If knowledge of the value of the
STRING_OUTPUT isrequired, the value to be written to the STRING_OUTPUT
can also be written to a STRING for local storage.

In X-Generation Control Systems, if severa values areissued to a
STRING_OUTPUT, thelogic will only see the last value written to the
STRING_OUTPUT when the SIMPL + program task switchesaway. If all valuesare
required to be seen by the logic, a PROCESSL OGI C statement is required after
writing to the STRING_OUTPUT.

In the 2-Series Control Systems, al values writtento a STRING_OUTPUT are
maintained. The logic will see each value of the STRING_OUTPUT. No
PROCESSLOGIC isrequired.

For an array of STRING_OUTPUTS, the maximum value of SIZE is 65535. Vaid
indices are 1 through the specified size.

Language Reference Guide - DOC. 5797G SIMPL+® @ 65

Software

Crestron SIMPL+®

Example:

STRING_OUTPUT TheName$;

Signifies one string called TheName$ that is generated by the SIMPL + program and
sent to the SIMPL program.

STRING_OUTPUT SortedNames$[5];

Specifies five strings that are generated by the SIMPL + program and sent to the
SIMPL program. The names are referred to as SortedNames[1] through
SortedNames[5].

STRING_OUTPUT SortedNames$[5,5];
Same as above except al five are aways shown.

Version:
SIMPL+ Version 3.01 - Fixed size arrays and minimum sizes.

SIMPL+ Version 3.00 - can no longer be passed to functions by reference. (2-Series
Control Systems only)

SIMPL+ Version 2.00 for STRING_OUTPUT arrays.
SIMPL+ Version 1.00 for everything else.

66 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

STRUCTURES

A structure is a collection of one or more variables grouped together under asingle
name. Thesevariables, called structure fields or members, may consist of bothinteger
and string datatypes. Structures help organize related data because they allow
variables to be grouped together as a unit instead of as separate entities.

Structure datatypes can only be defined globally. Variables of a defined structure
datatype may be declared both globally and locally and passed as function arguments.
Structures are always passed to functions by reference. INTEGER,
LONG_INTEGER, SIGNED_INTEGER, SIGNED_LONG_INTEGER and
STRING are the only SIMPL + datatypes allowed to be used as structure member
fields. INTEGER and LONG_INTEGER can include 1 and 2 dimensiona arrays.
String arrays are not permitted.

The syntax for defining a structure is as follows:

STRUCTURE struct_name
{

type memberl;

type member2;

type memberN;

}:
The keyword, STRUCTURE, tellsthe compiler that anew datatypeis being defined.
Each typeis one of the SIMPL + datatypes, INTEGER, LONG_INTEGER,

SIGNED_INTEGER, SIGNED | ONG_INTEGER or STRING. Struct_ nameisthe
name for the structure that will be used as the new datatype.

Declaring avariable of a structure datatype is as follows:

struct_name var_name;

An example of a structure would be an entry in a phone book. The phone book
contains many entries, all containing the same three pieces of information: the
person’s name, address and phone number. The structure would be defined as
follows:

STRUCTURE PhoneBookEntry
{

STRING Name[50];

STRING Address[100];
STRING PhoneNumber[20];

};

PhoneBookEntry OneEntry;
PhoneBookEntry Entry[500];

In this example, the name, PhoneBookEntry, is the datatype defined that will
encapsulate the structure fields, Name, Address and PhoneNumber. Two variables
are then defined to be of this datatype. The variable, OneEntry, is a variable that
contains one instance of the datatype, PhoneBookEntry.

Language Reference Guide - DOC. 5797G SIMPL+® @ 67

Software Crestron SIMPL+®

The variable, Entry, isthen defined to be an array of the datatype, PhoneBookEntry
consisting of 501 individual instances, namely Entry[Q] to Entry[500].

To access astructure’ sfield, the structure’ s declared variable name is used, followed
by a period (also known asthe ‘dot’ or ‘dot operator’), then followed by a structure
member variable name.

From the example above, accessing the Name field from the declared variable would
be written as follows:

OneEntry.Name
or

Entry[5] -Name

Using thisin a SIMPL + statement might look as follows:

IT (OneEntry.Name = “David”)
Return;

IT (Entry[5]-Name = “David”)
Return;

Passing structures as function argumentsis as follows:

FUNCTION myFunction (PhoneBookEntry argOneEntry,
PhoneBookEntry argentry[])

{

if (argOneEntry.Name = “David”)

return;

if (argéEntry[5]-Name
return;

}

“David”)

Version:
SIMPL+ Version 3.00.02

Control System
2-Series Only

68 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Declaration Modifiers

Volatile

Name:
Volatile

Syntax:

Volatile

NOTE: Thisisnot adeclaration but a declaration modifier. It works only in
9 conjunction with another declaration keyword.

Description:

Global integer and string program variables will not retain their value if hardware
power islost.
Example:

Volatile integer n;
Volatile string s[100];

Version:
SIMPL+ Version 3.00

Control System

2-Series Only . The X-generation compiler will give an error message saying that all
variables are non-volatile.

Language Reference Guide - DOC. 5797G SIMPL+® @ 69

Software

Crestron SIMPL+®

Nonvolatile

Name:

Nonvolatile

Syntax:

Nonvolatile

NOTE: Thisisnot adeclaration but a declaration modifier. It works only in
conjunction with another declaration keyword.

Description:

Global integer and string program variableswill retain their value if hardware power
islost.
Example:

Nonvolatile integer n;
Nonvolatile string s[100];

Version:
SIMPL+ Version 3.00

Control System:

2-seriesonly. The X-generation processorswill give amessage that saysall variables
are non-volatile.

70 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

E-mail Functions

Important SendMail Considerations

1. IntheSIMPL+ function call to* Send Mail”, the parameters“Mailserv”,
“To” and “From” fieldsare MANDATORY, whereas “cc”, “ subject”
and “message” are not.

2. Only the*SMTP AUTH” authentication type with “LOGIN”
authentication scheme is supported for now.

3. Questionsfor the |SP/e-mail service provider to determine compatibility
with the SEND MAIL feature.

A. Doesthe |SP/service provider support NON-WEB clients?

B. Doesthe|SP/service provider support “SMTP AUTH”
authentication type with “LOGIN” authentication scheme?

C. For example: the e-mail provider SBC Y AHOO supports web
aswell as non web clients. For non web clients, one of the mail
servers to communicate withis SMTPAUTH.FLASH.NET.
This mail server supports SMTP AUTH and LOGIN auth
scheme.

4. SEND MAIL client queries the mail server to determine the
authentication type and scheme and returns an “unsupported” error
(error #-9) if the mail-server does not support LOGIN scheme; however
if the client is unable to determine information regarding the schemes
supported, it will go ahead and try to send out the e-mail to the intended
recipients, but the server may refuse to relay it to external destinations.
Thiswill returna“failure” code, whichisaPOSITIVE integer (Refer to
E-mail Function Return Error Codes on page 72).

5. For mail servers needing no authentication, the “username” and
“password” field are set to an EMPTY STRING (“*). Again, asin (4)
above there is no guarantee that the mail-server will relay the e-mail to
external destinations.

6. Incase of an error/failure, the first occurring error/failure code is
returned.

7. If themessageline exceeds 998 characterswithout a<CR-L F> sequence,
the SEND MAIL module automatically inserts one.

8. The“Mail-server” parameter in the SIMPL+ function call to Send Mail
canbean |Paddress, ex. “132.149.6.220" or aname " mail 1.Mycompany
name.com”. In case of a name, DNS will be used to resolve the name,
and the control system MUST have a DNS server setup.

9. **REMINDER**: Stringsin SIMPL can only be 256 characters long.
But internal to SIMPL + they can be concatenated to atotal length of
65536 characters, aslong asaSIMPL+ BUFFER_INPUT typeisusedto
accumulate the strings.

Language Reference Guide - DOC. 5797G SIMPL+® @ 71

Software

Crestron SIMPL+®

E-mail Function Return Error Codes

ERROR CODE DESCRIPTION
SMTP_OK 0 Success
SMTP ERRORS (NONRECOVERABLE ERRORS)
ERROR CODE # DESCRIPTION
SMTP_ERROR_FATAL -1 | Any non-recoverable error from the e-mail
module of the firmware (for example: if
“mailserver”, “from” and “to” are empty).
SMTP_ERROR_ILLEGAL_CMD -2 | General internal error.
SMTP_ERROR_CONNECT -3 | Failure to connect to the mailserver.
SMTP_ERROR_SEND -4 | Internal error while actually sending out e-mail.
SMTP_ERROR_RECV -5 | Internal error while actually receiving out e-mail.
SMTP_ERROR_NU_CONNECT -6 | Internal error while processing the send.
SMTP_ERROR_NU_BUFFERS -7 | Lack of memory buffers while processing send
or receive mail. Internal error.
SMTP_ERROR_AUTHENTICATION -8 | Authentication failure.
SMTP_ERROR_AUTH_LOGIN_UNSUPPORTED -9 | CLEAR TEXT login scheme is not supported.
SMTP_INV_PARAM -10 | Bad parameters to SendMail. Must supply
Server, From, and To.
SMTP_ETHER_NOT_ENABLED -11 | Ethernet not enabled. Cannot send mail.
SMTP_NO_SERVER_ADDRESS -12 | No DNS servers configured. Cannot resolve
name.
SMTP_SEND_FAILURE -13 | SendMail failed.
SMTP FAILURES (RECOVERABLE ERRORS)
ERROR CODE DESCRIPTION
SMTP_FAILURE_TO_RCPT_COMMAND 3 There was an error sending e-mail to the “to”
recepient.
SMTP_FAILURE_CC_RCPT_COMMAND 4 There was an error sending e-mail to the “CC”
recepient.
SMTP_FAILURE_DATA_COMMAND 5 There was an error sending the message body.

72 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

SendMalil

Name:
SendMail

Syntax:

SIGNED_INTEGER SendMail(STRING Server,
STRING UserLogonName,

STRING UserLogonPassword,

STRING From,

STRING To,

STRING CC,

STRING Subject,

STRING Message D)

Description:
Send an e-mail message using SMTP protocol.

Parameters:

Server - Required. Specifies address of the mail server. It can either be an | P address
in dot-decimal notation (ex: 192.168.16.3) or a name to be resolved with aDNS
server (ex: mail.myisp.com). If anameis given, the control system must be
configured with a DNS server (ADDDNS console command). Maximum field
length: 40.

User L ogonName - Optional, but if authenticationisnot required, put an empty string
initsplace. If the mail server requires authentication, UserLogonName indicates the
user name of the sender for the mail server. An empty string indicates that
authentication is not required. Only “clear text” authentication isimplemented.
“Clear text” refers to the authentication method used by the mail server. If the mail
server requires a higher level authentication, mail can not be sent to the mail server.
Maximum field length: 254.

User L ogonPassword - Optional, but if authentication is not required, put an empty
string in its place. If the mail server requires authentication, UserL ogonPassword
indicates the password of the sender for the mail server. An empty string indicates
that authentication is not required. Only “clear text” authentication isimplemented.
“Clear text” refers to the authentication method used by the mail server. If the mail
server requires a higher level authentication, mail can not be sent to the mail server.
Maximum field length: 254.

From - Required. Specifiesthe e-mail address of the sender in the a@b.com format.
Only one e-mail addressis allowed. Aliases or nicknames are not supported. This
argument is mandatory. Maximum field length: 242.

To- Required. Specifiesthe e-mail address of the recipient(s) in the a@b.com format.
Multiple recipients may be specified delimited with a“;”. Thisargument is
mandatory. Maximum field length: 65535.

CC - Optional , but put an empty string in its place to indicate that there are no
recipients. Specifies the e-mail address of the carbon copy recipient(s) in the

Language Reference Guide - DOC. 5797G SIMPL+® @ 73

Software

Crestron SIMPL+®

a@b.com format. Multiple recipients may be specified delimited with a*“;”.
Maximum field length: 65535.

Subject - Optional, but use an empty string to indicate that there is no subject.
Specifies the subject of the e-mail message. Maximum field length: 989.

M essage - Optional, but use an empty string to indicate that there is no message.
Specifies the body of the e-mail message. An empty string indicates an empty
message. Maximum field length: 65535.

Return Value:

0if successful. Otherwise, E-mail Return Error Codeisreturned. Negativereturn error
codesindicate that no part of the e-mail was sent (example: user logon password was
incorrect). Positive return error codes indicate a failure (example: one or more
recipient e-mail addresses was invalid), but the e-mail was still sent. In the event of
more than one failure, the return error code of the first failure is returned.

Example:

SIGNED_INTEGER nErr;

nErr = SendMail(“192.168.16.3",
“UserLogonName™,
“UserLogonPassword”,

“SenderEmai lAddress@crestron.com”,
“RecipientEmai lAddress@crestron.com”,
“ccEmai lAddress@crestron.com”,
“This is the subject”,

“This is the message”);

if (nErr < 0)

Print(“Error sending e-mail\n”);
else

Print(“SendMail successful!\n);

Version:
SIMPL+ Version 3.01.xx (Pro 2 only)

74 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Events

Events Overview

SIMPL + isan event driven language. There are four functions which deal with
activating eventsin agiven SIMPL+ program; CHANGE, EVENT, PUSH, and
RELEASE.

CHANGE

Name:
CHANGE

Syntax:

CHANGE <variable_namel> [, <variable_name2> ...]

{

[Local Variable Definitions]
<statements>

}

Description:

<variable_name> may be either aDIGITAL_INPUT, ANALOG_INPUT, or
STRING_INPUT type. If itisaDIGITAL_INPUT, the statements between { and }
will be executed when the input transitions from low to high or high to low. If itisan
ANALOG_INPUT or STRING_INPUT, the statements between { and } will be
executed whenever the variable changes. Note that for an ANALOG_INPUT or
STRING_INPUT, the same value re-issued will also cause the CHANGE to activate.

When using ANALOG_INPUT, BUFFER_INPUT, DIGITAL_INPUT, or
STRING_INPUT arrays, only a change in the entire array can be detected, not an
individual element. Refer to “ GetLastModifiedArraylndex” on page 93 to determine
which element actually changed. Use IsSignal Defined to ensure that you send data
only to outputs that exist or take input from signals that exist.

When listing multiple variable names, the names can be put on the same line or
broken up into several CHANGE statements for readability.

Refer to “ Stacked Events’ on page 80.

Language Reference Guide - DOC. 5797G SIMPL+® @ 75

Software Crestron SIMPL+®

Example:

STRING_INPUT some_data$[100];
ANALOG_OUTPUT level;

CHANGE some_data$
{
level=48;

¥
When the STRING_INPUT changes, the ANALOG_OUTPUT level will have the
value 48 put into it. If the same datacomesin on some_data$, the CHANGE block is
executed again.

ANALOG_INPUT ThingsToAdd[20];

ANALOG_OUTPUT Sum;

INTEGER 1, Total;

CHANGE ThingsToAdd

{
Total=0;
FOR(I=0 to 20)
if (IsSignalDefined (ThingsToAdd[1]))
Total = Total + ThingsToAdd[I];
Sum = Total;
}

In this example, an array is used to hold elements to add. When any element of the
array changes, the sum is recomputed and issued on an analog output variable.

Version:
SIMPL+ Version 3.00 - local variables are allowed within CHANGE statements.

SIMPL+ Version 2.00 for ANALOG_INPUT, BUFFER_INPUT,
DIGITAL_INPUT, and STRING_INPUT arrays as <variable_name>.

SIMPL+ Version 1.00 for everything else.

76 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

EVENT

Name:
EVENT

Syntax:

EVENT
{

[Local Variable Definitions]
<statements>

}

Description:

Executes the defined <statements> anytime one of the inputsto the SIMPL+ symbol
changes. It issimilar to having a CHANGE statement listed for every input, and each
change is set up to execute acommon block of code. Refer to “ Stacked Events’ on

page 80.

Example:

ANALOG_INPUT levell, level2, level3;
STRING_INPUT extra$[2]1[20];:
STRING_OUTPUT OUT$;

EVENT

{
OUT$=extra$[0]+extra$[1]+CHR(level1)+CHR(level2)+CHR(level3)

}

In this example, when the ANALOG_INPUTslevell, level2, level3, or level4 have
any change or the STRING_INPUT array extra$ has changed, the
STRING_OUTPUT OUTS$ will be recomputed and reissued.

Version:
SIMPL+ Version 3.00 - Local variables are allowed within EVENT statements.
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 77

Software Crestron SIMPL+®

PUSH
Name:
PUSH
Syntax:
PUSH <variable_namel> [, <variable_name2> ...]
{
[Local Variable Definitions]
<statements>
}
Description:

<variable name>isaDIGITAL_INPUT type. On therising edge of
<variable_name>, the statements between the opening { and closing } are executed.

When using DIGITAL_INPUT arrays, only a change in the entire array can be
detected, not an individual element. Refer to “ GetLastM odifiedArraylndex” on
page 93 for amethod of detecting a change to an individual element.

When listing multiple variable names, the names can be put on the same line or
broken up into several PUSH statements for readability. Refer to “ Stacked Events’
on page 80.

Example:

DIGITAL_INPUT trigger;
STRING_OUTPUT output$;

PUSH trigger

{
output$ = “Hello, World!”;

}

Inthisexample, whenthe DIGITAL _INPUT trigger transitionsfrom low to high, the
STRING_OUTPUT output$ will have the string “Hello, World!” put into it.

Version:
SIMPL+ Version 3.00 - local variables are allowed within PUSH statements.
SIMPL+ Version 2.00 for DIGITAL_INPUT arrays as <variable_name>.
SIMPL+ Version 1.00 for everything else.

78 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Release

Name:
RELEASE

Syntax:

RELEASE <variable_namel> [, <variable_name2> ...]

{

[Local Variable Definitions]
<statements>

}

Description:

<variable name>isaDIGITAL_INPUT type. On thetrailing edge of
<variable_name>, the statements between the opening { and closing } are executed.

When using DIGITAL_INPUT arrays, only achange in the entire array can be
detected, not an individual element. Refer to “ GetLastM odifiedArraylndex” on
page 93 for amethod of detecting a change to an individual element.

When listing multiple variable names, the names can be put on the same line or
broken up into several REL EASE statements for readability. Refer to “ Stacked
Events’ on page 80.

Example:

DIGITAL_INPUT trigger;
STRING_OUTPUT output$;

RELEASE trigger

{
output$ = “Hello, World!”;

}

Inthisexample, whenthe DIGITAL _INPUT trigger transitionsfrom high to low, the
STRING_OUTPUT output$ will have the string “Hello, World!” put into it.

Version:
SIMPL+ Version 3.00 - local variables are allowed within RELEASE statements.
SIMPL+ Version 2.00 for DIGITAL_INPUT arrays as <variable_name>.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G SIMPL+® @ 79

Software Crestron SIMPL+®

Stacked Events

Stacked Eventsrefersto multiple CHANGE, PUSH or REL EASE functionsfollowed
by a single block of code (complex statement).

NOTE: Only CHANGE, PUSH, or REL EASE functions are used in stacked events.
0 If necessary, refer to the descriptions of each function for details.

NOTE: Aninput signal can be used in more than one event function. The order
execution is as follows:

The order for aPUSH:

PUSH statements in the order they appear in the source.

CHANGE statementsin the order they appear inthe source EVENT statement
The order for a RELEASE:

REL EASE statementsin the order they appear in the source.

CHANGE statementsin the order they appear inthe source EVENT statement

A typical event statement may appear as:

PUSH varl, var2

{
// code
b

SIMPL + allows event stacking, which allows a block of code to be called from
different CHANGE, PUSH, or RELEASE statements. An exampleis:

STRING_INPUT A$[100];
DIGITAL_INPUT IN1, IN2, IN3, IN4;
ANALOG_INPUT LEVEL;
ANALOG_INPUT PRESETS[5];
PUSH IN1
PUSH IN2
CHANGE IN3, LEVEL, A$, PRESETS
RELEASE IN3, IN4
{

// code
3

This allows one piece of code to execute from many different types of event
statements.

80 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Expressions & Statements

An expression consists of operators and operands.
i.e,
5*6
or
(VAL1 + 5) / 30
or
(26 + BYTE(THESTRING$,1)) MOD Z = 25

Statements consist of function calls, expressions, assignments, or other instructions.
There are two types of statements, Simple and Complex.
A simple statement ends with a semicolon (;). Examples of simple statements are:
X = 2Z/10; // Simple assignment statement using
// operators.

PRINT(““Hello, World!\n™); // Simple statement using a function
// call.

CHECKSUM = ATOI(Z$) + 5; // Simple assignment statement using
// a function call and operators.

A complex statement is a collection of simple statements that start with '{* and end
with '}'. An example would be:

{ // Start of a complex statement

X = 2Z/10; // Simple assignment statement

// using operators.

PRINT(““Hello, World!\n); // Simple statement using a
// function call.

CHECKSUM = ATOI(Z$) + 5; // Simple assignment statement
// using a function call and // operators.

} 7/ End of a Complex statement

Language Reference Guide - DOC. 5797G SIMPL+® @ 81

Software Crestron SIMPL+®

Looping Constructs

Looping Constructs Overview

L oops are used to perform a section of code zero or moretimesin arow in agiven
SIMPL + program. The body of the loop can consist of statements, expressions,
function calls, or other loops.

DO - UNTIL

Name:
DO - UNTIL

Syntax:

DO
{1
<statements>
[}]1 UNTIL (<expression>);

Description:

Thisloop performs a set of <statements> at least one time and will terminate when
<expression> evaluates to true. If only one statement is present in the body of the
loop, then the{ and } characters are not required, but may be used. If more than one
statement is present in the loop body, thenthe{ and} charactersare mandatory. Note
that <expression> is evaluated each time through the loop.

Example:

INTEGER X;
X=0;
DO

{

X =X+ 1;

PRINT(“X = %d\n”, X);
ks

UNTIL (X = 25);

In this example, the loop will execute 25 times. The PRINT function will show the
value of X after it isincremented to the computer port of the control system.

Version:
SIMPL+ Version 1.00

82 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

FOR

Name:
FOR

Syntax:

FOR (<variable> = <start_expression> TO <end_expression>
[STEP <step_expression>])
{1

<statements>

[}1

Description:

Thisloop executes the <statements> while <variable> iterates from the value of
<start_expression>to thevalue of <end_expression>. Thevariableisincremented by
<step_expression> at the end of the loop, if STEP is specified, elseit isincremented
by 1. The <step_expression> can be negative which will result in the loop counting
down. If only one statement is present in the body of the loop, then the{ and }
characters are not required, but may be used. If more than one statement is present in
the loop body, then the { and } characters are mandatory. Note that
<start_expression> and <end_expression> are evaluated once before the loop starts
and are not re-evaluated during the execution of the loop. If it is defined,
<step_expression> is evaluated each pass through the loop, so <step_expression>
may be modified during execution of the loop.

In the 2-Series control systems, the <step_expression> cannot changeits sign during
the execution of theloop. That is, if itisinitially apositive number, thenitisassumed
if it will always count up. If itis negative, it will always count down.

NOTE: If <variable> is set to avalue greater than the <end_expression> within the
0 body of the FOR loop, the FOR loop will exit when it reaches the end.

At the end of the loop, the loop index has the value of <end_expression> + 1 (unless
the loop index was modified in the body of the loop).

The comparisons are based on signed numbers, the maximum loop size for a step of
one would be from 1 to 32767. If larger indices are needed, for example, from 1 to
60000 a DO-UNTIL or WHILE loop could be used.

Language Reference Guide - DOC. 5797G SIMPL+® @ 83

Software

Crestron SIMPL+®

Example:

STRING_INPUT IN$[100];
INTEGER X;
FOR (X = 1 TO LENCINS$))

{

PRINT(“Character %d of String %s is %s\n”, X, INS$,

MID(INS, X, 1));
¥

In this example, the loop will iterate through each character of a string and print out
the string and its position in the original string.

Version:
SIMPL+ Version 1.00

84 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

WHILE

Name:
WHILE

Syntax:

WHILE(<expression>)
{1

<statements>

[+

Description:

Thisloop performs a set of <statements> as long as <expression> does not evaluate
to zero.

If only one statement is present in the body of the loop, thenthe{ and } characters
are not required, but may be used. If more than one statement is present in the loop
body, thenthe { and} characters are mandatory. Note that depending on
<expression>, the body of the loop may never be executed. Note that <expression>
is evaluated at the beginning of each time through the loop.

Example:

INTEGER X;

X=0;

WHILE(X < 25)

{

X=X+ 1;

PRINT(“X = %d\n”, X);
3

In this example, the loop will execute 25 times. The PRINT function will show the
value of X after it isincremented to the computer port of the control system.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 85

Software Crestron SIMPL+®

Branching & Decision Constructs

BREAK

Name:
BREAK

Syntax:
BREAK;

Description:

Terminates the innermost DO-UNTIL, FOR, or WHILE loop before the exit
condition is met. Execution resumes after the end of the bop.

Example:

INTEGER X;
ANALOG_INPUT Y;
X=0;
WHILE(X<25)
{
IF(Y = 69)
BREAK;
X=X+ 1;
PRINT(“X=%d\n", X);
¥

In this example, the WHILE loop will terminate if the ANALOG_INPUT Y equals
the value of 69. Otherwise, the loop will exit viathe normal termination condition.

Version:
SIMPL+ Version 1.00

86 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

CSWITCH

Name:
CSWITCH

Syntax:

CSWITCH (<expression>)

{

CASE (<unique integer constant>):
{1

<statementsl>

[break;]

[}

CASE (<unique integer constant >):
{1
<statements2>
[break;]
[}

[DEFAULT:
{1
<statements>
[break;]
[}
}

NOTE: In SIMPL+ v3.01.00 and later, the 'break’ statement is required to terminate
the case statement block that it resides within. If no 'break’ statement exists, the
program will continuing executing to the next case statement block or default
statement block.

ﬂ NOTE: Many CASE statements may be used in the body of the CSWITCH.

Description:

CSWITCH isamore direct method of writing a complex |F-EL SE-IF statement. In
the CSWITCH, if <expression> is equal to a CASE’ s constant, then the statement
block for that CASE value is executed. This same method would apply to as many
CASE statements as are listed in the body of the CSWITCH. Notethat if any of the

Language Reference Guide - DOC. 5797G SIMPL+® @ 87

Software Crestron SIMPL+®

<statements> blocks are only asingle statement, the{ and } characterson the CASE
may be omitted. If no conditionis met in the CA SE statements, the DEFAULT case,
if specified, is used.

CSWITCH has the restriction that the case statement only contains unique integer
constants. CSWITCH differsfrom SWITCH in that the operating system is able to
evaluate and execute the CSWITCH statement faster. Therefore, you should use
CSWITCH in place of SWITCH whenever unique constants are being evaluated.

Example:

ANALOG_INPUT AIN;

INTEGER X;
CSWITCH(AIN)
{
CASE (2):
{
X = 0;
break; // terminate this case statement block
H
CASE (3):
{
X = AIN;
// continue executing to next case statement block ==>
case(5)
b
CASE (5):
{
X =X + AIN + 1;
break;
h
DEFAULT:
{
PRINT(“Unknown command %d!\n’”, AIN);
break;
b
b

In thisexample, if thevalue of AIN is2, X isset equal to 0. If AIN is3, X isset AIN
+AIN + 1. If AIN is5, X isset equal to AIN+1. If AIN isany other value, an error
message s printed.

Version:
SIMPL+ Version 3.00.05

Control System
2-Series Only

88 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

IF - ELSE

Name:
IF- ELSE

Syntax:

IF (<expression>)
{1

<statements>

X1
[ELSE]

{1

<statements>

11

Since <statements> can be an I F construct, you can string out a series of |F-EL SE-IF

statements of the form:

IF (<expression>)
{1

<statements>

[+

[ELSE] 1F (<expression>)

{1

<statements>

11

NOTE: A final EL SE may be used to express default handling if none of the previous
ﬂ conditions were met.

IF (<expression>)

{1

<statements>

[}

[ELSE] IF (<expression>)

{1

<statements>

31
[ELSE]

{1

<statements>

[}

Language Reference Guide - DOC. 5797G

SIMPL+® @ 89

Software Crestron SIMPL+®

Description:

Executes apiece of code only if its associated <expression> evaluates to true. Many
expressions can be tested if the IF-EL SE-I1F construct is used. Note that only one
<statements> block in an IF-EL SE or IF-EL SE-IF construct is executed. In any
section of the construct, if <statements> isonly a single statement, then the { and }
characters may be omitted.

Example:

STRING_INPUT IN$[100];
STRING Y$[100];

INTEGER X;
IF (IN$ = “STRING1™)
{

X=5;

Y$ = INS$;
b

ELSE
{

X=6;

Y$ = 3
b

In thisexample, if IN$ is equal to STRINGL, then the first two statements are
executed. If IN$ isadifferent value, then the second groups of statements are
evaluated. A more complex |F-EL SE-1F construct appears as.

IF (IN$ = “STRING1™)

{

X=5;

Y$ = INS;

3

ELSE IF (IN$="STRING2)

{

X=6;

Y$ = %3

Y$ = “z277;
}

Version:
SIMPL+ Version 1.00

90 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

SWITCH

Name:
SWITCH

Syntax:

SWITCH (<expression>)
{

CASE (<expressionl>):
{1

<statementsl>
[}

CASE (<expression2>):
{1

<statements2>

3]
[DEFAULT:

{1

<statements>

[}
}

ﬁ NOTE: Many CASE statements may be used in the body of the SWITCH.

Description:

SWITCH isamoredirect method of writing acomplex |F-EL SE-IF statement. Inthe
SWITCH, if <expression> is equal to <expression1>, <statementsl> is executed. If
<expression> is equal to <expression2>, <statements?> is executed. This same
method would apply to as many CASE statements as are listed in the body of the
SWITCH. Notethat if any of the <statements> blocksare only asingle statement, the
{ and} characters on the CASE may be omitted.

SWITCH has the restriction that the expressions may not be STRING expressions,
they can only be INTEGER type expressions. SWITCH may only have up to 32
CASE statementsin SIMPL+ Version 1.00. If more are used, a“FULL STACK”
error results at the time of uploading the module to the control system. Version 2.00
has no restriction.

When aSWITCH isevauated, thefirst matching CASE isused. If another CASE (or
more) would have matched, only the first oneis used. If no condition is met in the
CASE statements, the DEFAULT caseis used if specified.

Language Reference Guide - DOC. 5797G SIMPL+® @ 91

Software Crestron SIMPL+®

Example:
ANALOG_INPUT AIN;
INTEGER X;
SWITCHCAIN)

{
CASE (2):
{
X = 0;
b
CASE (3):
{
X = AIN;
b
CASE (5):
{
X = AIN + 1;
b
DEFAULT:
PRINT(“Unknown command %dI\n’”, AIN);
h

Inthisexample, if thevalueof AINis2, X isset equal to 0. If AIN is3, X isset equal
to AIN. If AIN is5, X isset equal to AIN+1. If AIN isany other value, an error
message is printed.

Version:
SIMPL+ Version 2.00 - removes CASE restriction
SIMPL+ Version 1.00 with 32 CASE statements maximum

92 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Array Operations

Array Operations Overview

Array Operations functions are used to perform generalized operations on arrays,
such as getting bounds and setting the elements of an array to aknown valuein a
given SIMPL+ program.

GetLastModifiedArraylndex

Name:
GetLastModifiedArraylndex

Syntax:
INTEGER GetLastModifiedArraylndex ();

Description:
Determines the specific index number of an input list array that has changed.

ANALOG_INPUT, BUFFER_INPUT, DIGITAL_INPUT, and STRING_INPUT
arrays are subject to be used in CHANGE, PUSH, and REL EA SE statements, but
only the overall array can be specified in the statement, not an individual element. In
order to find out what element has been modified (and hence caused the activation of
the CHANGE, PUSH, or RELEASE), GETLASTMODIFIEDARRAYINDEX is
used.

NOTE: Touse GETLASTMODIFIEDARRAYINDEX, only one array may be used
inasingle CHANGE, PUSH, or RELEASE statement. If more than one element of
the array changes at the same time, multiple events are run. For example, if D[10] is
aDIGITAL_INPUT array that issubject to aPUSH event, and D[1] and D[2] change
at the same time, the PUSH isfirst run where D[1] changes and
GETLASTMODIFIEDARRAY INDEX returns 1, then the PUSH isrun again where
D[2] changes and GETLASTMODIFIEDARRAY INDEX returns 2.

NOTE: Using GetLastModifiedArraylndex OUTSIDE of an event (PUSH,
RELEASE, CHANGE or EVENT) may return an index to an ambiguous signal if
more than oneinput array is declared within the program. Therefore, do not use this
function if morethan oneinput signal array isdeclared within the program, unlessyou
use it within one of the event statements.

Return Value:
The element of the array that has changed.

Language Reference Guide - DOC. 5797G SIMPL+® @ 93

Software Crestron SIMPL+®

Example 1 - Correct Use:
DIGITAL_INPUT LIGHT_SCENES[10], MORE_LIGHT_SCENES[10};
DIGITAL_OUTPUT INTERLOCKED_LIGHT_SCENES[10];
INTEGER 1I;
PUSH LIGHT_SCENES
{
FOR(1=1 to 10)
INTERLOCKED_LIGHT_SCENES[I1] = 0;
ProcessLogic();

INTERLOCKED_LIGHT_SCENES[GetLastModifiedArraylndex()] =
1;

}

Example 2 - Incorrect Use:
DIGITAL_INPUT LIGHT_SCENES[10];
DIGITAL_OUTPUT INTERLOCKED_LIGHT_SCENES[10];
INTEGER I;
PUSH LIGHT_SCENES,MORE_LIGHT_SCENES

{//this PUSH statement will be called twice (once for
LIGHT_SCENES and once for MORE_LIGHT_SCENES)

FOR(I=1 to 10)
INTERLOCKED_L IGHT_SCENES[1]=0
ProcessLogic();

INTERLOCKED LIGHT_SCENES[GetLastModiFfiedArraylndex()] =
1;

}

In this example, when oneinput element changes, all the output elements are set to O
and then the output level corresponding to the changed input level isset to 1. This
mimics the functionality of the Interlock symbol in SIMPL.

Version:
SIMPL+ Version 2.00

94 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

GetNumArrayCols

Name:
GetNumArrayCols

Syntax:
INTEGER GetNumArrayCols(STRING | INTEGER ARRAY_NAME);

Description:

Finds the number of columnsin atwo-dimensional array or the size of the array for
aone-dimensiona array.

Parameters:
ARRAY_NAME isthe array as determined by the size.

Return Value:

For the data types in the table after this paragraph, the return value of
GetNumArrayColsis shown.

DATA TYPE RETURN VALUE
ANALOG INPUT X [size] Size
ANALOG INPUT X [size] Size
DIGITAL INPUT X [size] Size
DIGITAL OUTPUT X [size] Size
STRING INPUT X [size] Chars
STRING INPUT X [size] [chars] Chars

STRING OUTPUT X [size] Size

STRING X [chars] Chars
STRING X [size] [chars] Chars
INTEGER X [size] Size

INTEGER X [size 1] [size 2] Size2
SIGNED_INTEGER X [size] Size

SIGNED_INTEGER X [sizel] [size2] Size2
SIGNED_LONG_INTEGER X [size] Size

SIGNED_LONG_INTEGER X [size 1] [size 2] Size2
BUFFER INPUT X [chars] Chars
BUFFER INPUT X [size] [chars] Chars

Language Reference Guide - DOC. 5797G SIMPL+® @ 95

Software Crestron SIMPL+®

Example:

DIGITAL_INPUT TEST;
INTEGER My _Array[10][20]:

PUSH TEST

{
PRINT(“Columns = %d\n””, GetNumArrayCols(My_Array));

¥
In this example, Columns = 20 will be printed.

Version:
SIMPL+ Version 2.00

96 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GetNumArrayRows

Name:
GetNumArrayRows

Syntax:
INTEGER GetNumArrayRows(STRING | INTEGER ARRAY_NAME);

Description:
Returns the number of rows for two-dimensional arrays.
One-dimensional arraysreturn 0.

Parameters:
ARRAY _NAME isthe array name as determined by the size.

Return Value:

For the data types in the table after this paragraph, the return value of
GetNumArrayRows is shown.

DATA TYPE RETURN VALUE
INTEGER X][sizel][size2] Size 1
SIGNED_INTEGER X][sizel][size2] Size 1
SIGNED_LONG_INTEGER X[sizel][size2] Size 1
STRING X]chars] Size
STRING_INPUT X][size][chars] Size
BUFFER_INPUT X[size][chars] Size
Example:

DIGITAL_INPUT TEST;
INTEGER My Array[10][20];

PUSH TEST

{
PRINT(“Rows = %d\n”’, GetNumArrayRows(My_Array));

}
In this example, Rows = 10 will be printed.

Version:
SIMPL+ Version 2.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 97

Software Crestron SIMPL+®

SetArray

Name:
SetArray

Syntax:
SetArray (ARRAY_NAME, INTEGER | STRING INIT_VALUE);

Description:
Sets every element of ARRAY_NAME to the INIT_VALUE.

Parameters:
ARRAY_NAME isthe name of the array to beinitialized. It may be any array type.

TheINIT_VALUE may bealNTEGER or STRING. Thefollowing chart showsthe
various combinations of ARRAY_NAME typesand INIT_VALUE types:

ARRAY_NAME TYPE INIT_VALUE MEANING
- TYPE

INTEGER, SIGNED_INTEGER INTEGER Every element of ARRAY_NAME is set to the INTEGER
value INIT_VALUE.

INTEGER, SIGNED_INTEGER STRING Each integer in ARRAY_NAME is initialized to ATOI
(INIT_VALUE).

LONG, SIGNED_LONG_INTEGER INTEGER Every element of ARRAT_NAME is set to the LONG value
INIT_VALUE.

LONG, SIGNED_LONG_INTEGER STRING Each integer in ARRAY_NAME is initialized to ATOI
(LONG_NAME)

STRING INTEGER Each string in ARRAY_NAME is initialized to CHR
(INIT_VALUE).

STRING STRING Each string in ARRAY_NAME is set equal to INIT_VALUE. IF
INIT_VALUE is longer than the maximum size allowed in the
array, it is truncated.

NOTE: When working with DIGITAL_OUPUT arrays, if the INIT_VALUE
evaluatesto 0, the digital signals are set low. For any non-zero value, the outputs are
set high.

Return Value:

None.

98 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:

DIGITAL_INPUT InitializeArrays;
INTEGER Levels[10];
STRING Names[5][51;

PUSH InitializeArrays

{
SetArray(Levels, 3);
SetArray(Levels, “37);
SetArray(Names, “xyz’);
SetArray(Names, 0x41);
¥
Thefirst lineinitializes al elements of the integer array Levelsto contain theinteger

3.

The second line attempts to initialize the elements of the integer array Levelswith a
string value - an ATOI isdone on the 3", which returns a 3, so that the end result is
the same as thefirst line.

Thethird lineinitializes all elements of the elements of the string array Names to
contain the string value “xyz".

The fourth line attempts to initialize the elements of the string array Names with an
integer value - a CHR is done on the 0x41, which returns the string “A”, so that the
end result has all elements of the string array Names containing the string “A”.

Version:
SIMPL+ Version 2.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 99

Software Crestron SIMPL+®

Bit & Byte Functions

Bit & Byte Functions Overview

These functions perform bit and byte masking operationsin a given SIMPL+
program.

Bit

Name:
Bit

Syntax:

INTEGER Bit(STRING SOURCE, INTEGER SOURCE_BYTE, INTEGER
BIT_IN_BYTE);

Description:
Determine the state of a specified bit in a particular byte of a given string.

Parameters:

SOURCE contains a STRING in which a bit of one byteisto be examined. Each
character in SOURCE is considered one byte.

SOURCE_BY TE references a character in the SOURCE string. The leftmost
character in SOURCE is considered 1.

BIT_IN_BY TE specifieswhich bit in the SOURCE_BY TE of SOURCE isto be
examined. BIT_IN_BY TE startsat position O (least significant or rightmost bit of the
byte). 7 isthe most significant or leftmost bit of the byte.

Return Value:

Returns 0 or 1 for avalid bit position. Illegal bit references will return 65535. It is
illega if SOURCE_BY TE is0 or greater than the length of the SOURCE string. Note
that it islegal to specify abit beyond 7. Thiswill reference a bit in another byte. In
this way, a source string can be used as a set of packed bit flags. The algorithm for
determining which bit in which byteisset when BIT_IN_BYTE isgreater than 7 is
asfollows:

Actual Byte in SOURCE = (BIT_IN_BYTE / 8) + SOURCE_BYTE
Actual Bit in Actual Byte = (BIT_IN_BYTE MOD 8)

Applying thisto BIT (“abc”,1,16) will reference hit 0 of byte 3 (the least significant
bit of byte “c” in SOURCE).

100 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:

This example takes an input string and creates an output string containing the
elements of the input string that do not have the most significant bit (bit 7) set.

STRING_INPUT SOURCE$[100];
STRING_OUTPUT OUTS$;

STRING TEMP$[100];

INTEGER 1;

CHANGE SOURCES$
{
FOR(I = 1 to LEN(SOURCES))
{
IF(BIT(SOURCES, 1, 7) = 0)
{
MAKESTRING(TEMP$, “%s%s”, TEMP$, MID(SOURCES, I, 1));
}
ks
OUT$ = TEMPS$;
ks

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 101

Software Crestron SIMPL+®

Byte

Name:
Byte

Syntax:
INTEGER Byte (STRING SOURCE, INTEGER SOURCE_BYTE);

Description:

Returns the integer equivalent of the byte at position SOURCE_BY TE within a
SOURCE string.

Parameters:

SOURCE isa STRING of characters. Each character in SOURCE is considered one
byte.

SOURCE_BY TE references a character in the SOURCE string. The leftmost
character in SOURCE is considered 1.

Return Value:

An integer containing the ASCII numeric value of the byte at position
SOURCE_BYTE in the string SOURCE. If SOURCE_BY TE is greater than the
length of the SOURCE string or is 0, 65535 is returned.

Example:

This piece of code will examine an input string to make sure that it starts with STX
character (02). From there, it will test the second byte and process different command
types accordingly.

STRING_INPUT IN$[100];

CHANGE IN$
{
IF(BYTE(INS,1) = 02)
{
SWITCH(BYTE(IN$,2))
{
CASE (65):
{
// Process Command type 65 (A) here.
¥
CASE (66):
{
// Process Command type 66 (B) here.
}
3
Version:

SIMPL+ Version 1.00

102 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

High
Name:
High
Syntax:
INTEGER High(INTEGER VALUE);

Description:
Returns the upper (most significant) 8-bits of an Integer.

Parameters:
VALUE isan integer containing the value of the most significant byte.

Return Value:
The upper 8-bits of the passed value.

Example:

ANALOG_ INPUT VALUE;

CHANGE VALUE

{
PRINT(“The upper byte of %X is %X\n”, VALUE, HIGH(VALUE))

}

Thiswill print the input value and the upper 8-bits of the value in hexadecimal. For
example, if VALUE is 0x1234, then the output is:

The upper byte of 1234 is 12.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 103

Software

Crestron SIMPL+®

Low

Name:

Low

Syntax:
INTEGER Low(INTEGER VALUE)

Description:
Returns the lower (least significant) 8-bits of an Integer.

Parameters:
VALUE isan integer containing the value of the least significant byte.

Return Value:
The lower (least significant) 8-hits of the passed value.

Example:

ANALOG_ INPUT VALUE;

CHANGE VALUE

{
PRINT(“The lower byte of %X is %X\n”, VALUE, LOW(VALUE));

}

Thiswill print the input value and the lower 8-bits of the value in hexadecimal. For
example, if VALUE is 0x1234, then the output is:

The lower byte of 1234 is 34.

Version:
SIMPL+ Version 1.00

104 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

RotateLeft

Name:
Rotatel eft

Syntax:
INTEGER RotatelLeft(INTEGER X, INTEGER Y);

Description:

Rotate X to the left (more significant direction) by Y bits; full 16 bits used. Same as
{{ operator. See RotateRight on page 106.

Parameters:
X isthe INTEGER to have bits rotated

Y isthe amount of bitsto rotate

Return Value:
An INTEGER containing the result of the rotated bits.

Example:
INTEGER X, Y, result;
result = RotateLeft(X, Y);

Version:
SIMPL+ Version 3.01.06

Language Reference Guide - DOC. 5797G SIMPL+® @ 105

Software Crestron SIMPL+®

RotateRight

Name:
RotateRight

Syntax:
INTEGER RotateRight(INTEGER X, INTEGER Y);

Description:

Rotate X to theright by Y bits; full 16 bitsused. Same as}} operator. e.g.: Each bit
takesthevalue of thebit that is Y bitsmore significant thanitis. The most significant
bit(s) are set from the least significant bits.

Parameters:
X isthe INTEGER to have bits rotated

Y isthe amount of bitsto rotate

Return Value:
An INTEGER containing the result of the rotated bits.

Example:

INTEGER X, Y, result;
result = RotateRight(X, Y);
If X =0x1234 and Y is 1 thenresult is 0x091A

Version:
SIMPL+ Version 3.01.06

106 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

RotatelLeftLong

Name:
Rotatel eftLong

Syntax:
LONG_INTEGER RotatelLeftLong(LONG_INTEGER X, INTEGER Y
);

Description:
Rotate X to theleft by Y bits; full 32 bits used.

Parameters:
X isthe LONG_INTEGER to have bits rotated

Y isthe amount of bitsto rotate

Return Value:
A LONG_INTEGER containing the result of the rotated bits.

Example:
LONG_INTEGER X, Y, result;
result = RotateleftLong(X, Y);

Version:
SIMPL+ Version 3.01.06

Language Reference Guide - DOC. 5797G SIMPL+® @ 107

Software Crestron SIMPL+®

RotateRightLong

Name:
RotateRightL ong

Syntax:
LONG_INTEGER RotateRightLong(LONG_INTEGER X, INTEGER Y
);

Description:
Rotate X to theright by Y bits; full 32 bits used.

Parameters:
X isthe LONG_INTEGER to have bits rotated

Y isthe amount of bitsto rotate

Return Value:
A LONG_INTEGER containing the result of the rotated bits.

Example:
LONG_INTEGER X, Y, result;
result = RotateRightLong(X, Y);

Version:
SIMPL+ Version 3.01.06

108 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Data Conversion Functions

Data Conversion Functions Overview

These functionstake oneform of data (integer or string) and convert it to the opposite
typeinagiven SIMPL + program. Usually, thesefunctionsarefor converting number
stored in strings to integers, or for converting numbers stored in integersto strings.

Atoi

Name:
Atoi

Syntax:

INTEGER Atoi (STRING SOURCE);

Description:

Convertsa STRING to an INTEGER value. The conversion looks for the first valid
character (0-9), and then reads until it finds the first invalid character. The resulting
string of valid charactersisthen converted. The“-” isignored, hence the output isan
unsigned number [i.e., ATOI(“-1") would yield 1 asthe output]. If the value exceeds
65535, the value is undefined. If no valid value to convert isfound, O is returned.

Parameters:

SOURCE is a string containing characters that range from 0 to 9 to be converted.

Return Value:
An integer representing the given string value. Example:

STRING_INPUT IN$[100];
INTEGER VAL;

CHANGE IN$

{

VAL = ATOI(IN$);

PRINT(“Value of %s after ATOl is %d\n”, IN$, VAL);

3
For example, if IN$is“abcl1234xyz”, then VAL will hold theinteger 1234. If IN$is
“-50", then VAL will hold the integer 50.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 109

Software

Crestron SIMPL+®

Atol

Name:
Atol

Syntax:
LONG_INTEGER Atol (STRING SOURCE);

Description:

Convertsa STRING to an LONG_INTEGER value. The conversion looks for the
first valid character (0-9), and then reads until it findsthe first invalid character. The
resulting string of valid charactersisthen converted. The “-" isignored, hence the
output is an unsigned number [i.e., ATOL(“-1") would yield 1 as the output]. If no
valid valueto convert isfound, O isreturned. If the integer exceeds 32 hits, the value
returned is undefined.

Parameters:

SOURCE is a string containing characters that range from 0 to 9 to be converted.

Return Value:
An integer representing the given string value. Example:

STRING_INPUT IN$[100];
LONG_INTEGER VAL;

CHANGE IN$

{

VAL = ATOL(INS);

PRINT(“Value of %s after ATOL is %ld\n”, IN$, VAL);
b

For example, if IN$is“abcl1234xyz”, then VAL will hold the number 1234. If INSis
“-50", then VAL will hold the number 50.

Version:
SIMPL+ Version 3.00.02

Control System
2-Series Only

110 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Chr

Name:
Chr

Syntax:
STRING Chr(INTEGER CODE);

Description:

Takestheinteger value specified and returns the corresponding ASCI| character asa
one-byte string.

Parameters:
CODE contains a number from 0 to 255 to be converted into an ASCII string.

Return Value:

A string representing the code. If CODE is greater than 255, lower 8-bits of CODE
are used in the computation.

Example:

STRING_OUTPUT Code$;
ANALOG_INPUT VALUE;

CHANGE VALUE

{
Code$ = CHR(VALUE);

PRINT(“Code = %s\n”, Code$);

}
In thisexample, if VALUE was equal to 72, the output would be Code = H.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 111

Software

Crestron SIMPL+®

ltoA

Name:
ItoA

Syntax:
STRING 1toA(INTEGER CODE);

Description:

Takesthevaluein CODE and creates astring containing the string equivalent of that
integer. The output string does not contain leading zeros.

Parameters:

CODE contains a number from 0 to 65535 to be converted into a string. CODE is
treated as an unsigned number.

Return Value:

A string representing the code. If CODE is greater than 65535, lower 16-bits of
CODE are used in the computation.

Note that the following two statements are equivalent:

out$ = i1toa(CODE);
makestring(out$, “%d”, CODE);

Example:

STRING_OUTPUT Code$;
ANALOG_INPUT VALUE;

CHANGE VALUE

{
Code$ = ITOA(VALUE);

PRINT(“Code = %s\n”, Code$);

3
For example, if VALUE was equal to 25, Code$ would contain the string “25”.

Version:
SIMPL+ Version 1.00

112 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

[toHex

Name:

ItoHex

Syntax:
STRING ITOHEX(INTEGER CODE);

Description:

Takesthevaluein CODE and creates a string containing the hexadecimal equivalent.
The output string does not contain leading zeros and is expressed in uppercase.

Parameters:

CODE contains anumber from 0 to 65535 to be converted into ahexadecimal string.
CODE istreated as an unsigned number.

Return Value:

A string representing the code. If CODE is greater than 65535, lower 16-bits of
CODE are used in the computation.

Note that the following two statements are equivalent:

out$ = i1tohex(CODE);
makestring(out$, “%X”, CODE);

Example:

STRING_OUTPUT Code$;
ANALOG_INPUT VALUE;

CHANGE VALUE

{
Code$ = ITOHEX(VALUE);

PRINT(*“Code = %s\n”, Code$);

}

For example, if VALUE contained the integer 90, Code$ would contain the string
“ 5AH .

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 113

Software

Crestron SIMPL+®

LtoA

Name:
LtoA

Syntax:
STRING LtoA(LONG_INTEGER CODE);

Description:

Takesthevaluein CODE and creates a string containing the string equivalent of that
LONG_INTEGER. The output string does not contain leading zeros.

Parameters:

CODE containsanumber from 0 to 2147483647 to be converted into astring. CODE
istreated as an unsigned number.

Return Value:
A string representing the code.
Note that the following two statements are equivalent:

out$ = Itoa(CODE);
makestring(out$, “%ld”, CODE);

Example:

STRING_OUTPUT Code$;
LONG_INTEGER VALUE;

CHANGE VALUE

{
Code$ = LTOA(VALUE);

PRINT(*“Code = %s\n”, Code$);

}
For example, if VALUE was equal to 25, Code$ would contain the string “25”.

Version:
SIMPL+ Version 3.00.07

Control System
2-Series Only

114 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

LtoHex

Name:
LtoHex

Syntax:
STRING LTOHEX(LONG_INTEGER CODE);

Description:

Takesthevaluein CODE and creates a string containing the hexadecimal equivalent.
The output string does not contain leading zeros and is expressed in uppercase.

Parameters:

CODE contains anumber from 0 to 2147483647 to be converted into a hexadecimal
string. CODE is treated as an unsigned number.

Return Value:
A string representing the code.
Note that the following two statements are equivalent:

out$ = Itohex(CODE);
makestring(out$, “%X”, CODE);
Example:

STRING_OUTPUT Code$;
LONG_INTEGER VALUE;

CHANGE VALUE

{
Code$ = LTOHEX(VALUE);
PRINT(*“Code = %s\n”, Code$);
3
For example, if VALUE contained the integer 90, Code$ would contain the string
“BA”,
Version:
SIMPL+ Version 3.00.07

Control System
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 115

Software

Crestron SIMPL+®

File Functions

File Functions Overview

File Functions perform file handle access from SIMPL +. Because of the overhead
involved with maintaining current directory and file positions, there are restrictions
on file 1/O. Each SIMPL + thread (main loop or event handler) that requires file
operations must first identify itself with the operating system. Thisis done with the
function, StartFileOperations. Before terminating the thread, the function
EndFileOperations must be called. Files cannot be opened across threads. In other
words, you cannot open afile in one thread (function main say) and then access the
file with the returned file handle in another (say an event handler). Thisisto prevent
two events from writing to different parts of afile. This meansthat you should open,
access and then close afile within the same thread. For example, aprogram might be
structured as follows:

STRING sBuf[1000];
SIGNED_INTEGER nFileHandle;
CHANGE input
{
SIGNED_INTEGER nNumRead;
StartFileOperations();
nFileHandle = FileOpen (“\\CFO\\MyFile”, _O_RDONLY);
if (nFileHandle >= 0)

{

nNumRead=FileRead(nFileHandle, sBuf, 500);
i f(nNumRead<0)

Print (“Read Error\n”);
FileClose(nFileHandle);

}
EndFileOperations();

}

/**

MainQ
Uncomment and place one-time startup code here
(This code will get called when the system starts up)

**/

Function Main(Q)
{
SIGNED_INTEGER nNumWritten;
StartFileOperations();
nFileHandle = FileOpen (“\\CFO\\MyFile”, _O WRONLY);
if (nFileHandle >= 0)
{
sBuf = “Hello World!”’;
nNumWritten=FileWrite(nFileHandle, sBuf, 500);

116 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

if(nNumWritten<0) Print (“WriteError™);
FileClose(nFileHandle);

}
EndFileOperations();

}

File Function Return Error Codes

KEYWORD VALUE FUNCTION

FILE_BAD_USER -3000 Calling task is not a file user. Use
StartFileOperations() first.

FILE_NO_DISK -3004 Disk is removed.

FILE_LONGPATH -3017 Path or directory name too long.

FILE_INVNAME -3018 Path or filename includes invalid character.

FILE_PEMFILE -3019 No file descriptors available (Too many
files open).

FILE_BADFILE -3020 Invalid file descriptor.

FILE_ACCES -3021 Attempt to open a read-only file or special
(directory).

FILE_NOSPC -3022 No space to create file in this disk.

FILE_SHARE -3023 The access conflicts from multiple tasks to
a specific file.

FILE_NOFILE -3024 File not found.

FILE_EXIST -3025 Exclusive access requested, but file
already exists.

FILE_NVALFP -3026 Seek to negative file pointer.

FILE_MAXFILE_SIZE -3027 Over the maximum file size.

FILE_NOEMPTY -3028 Directory is not empty.

FILE_INVPARM -3029 Invalid Flag/Mode is specified.

FILE_INVPARCMB -3030 Invalid Flag/Mode combination.

FILE_NO_MEMORY -3031 Can't allocate internal buffer.

FILE_NO_BLOCK -3032 No block buffer available.

FILE_NO_FINODE -3033 No FINODE buffer available.

FILE_NO_DROBJ -3034 No DROBJ buffer available.

FILE_IO_ERROR -3035 Driver I/O function routine returned.

FILE_INTERNAL -3036 Internal error.

Language Reference Guide - DOC. 5797G SIMPL+® @ 117

Software

Crestron SIMPL+®

Reading and Writing Data to a File

Reading and writing datato afilethat is moved from one kind of a system to another
has special programming considerations because it will likely be written on one kind
of system, e.g. aPC and read on another, e.g. aCrestron control system, or viceversa.
Most programmers are used to writing programs that are both written by a PC and
read by a PC.

The best way to write to afile that must be transferred between systemsis to write
pure ASCII text and use the FileRead/FileWrite routines. If you must write binary
data as binary, e.g. structures, integers, strings, arrays, please read and consider the
following.

Different kinds of systems store their internal data structures with various padding
bytesand lengths, that are not always apparent. For example, astructure declared like
this:

STRUCTURE

{
STRING s[5];

INTEGER 1;

}

may contain a padding byte between the string and the integer, so the integer can
begin on aword boundary. But this padding is system and compiler dependent, as
another system or compiler may handle this data perfectly well without a padding
byte. Also, some systems store integers with their most significant byte first (the
industry term is “big-endian”) or with their least significant bytes first (“little-
endian”).

Because compact flash is meant to be transferred among different systems, Crestron
has given the programmer two different ways to store data. It can be stored with
padding bytes by writing the integers, strings, structures, etc., directly (refer to
Writelnteger, WriteString, WriteStructure, Writel ntegerArray, etc) or it can be stored
directly asastring of bytes where the programmer controls exactly what is written
(refer to FileWrite). There are corresponding functions to read each of these. Data
written by one method should be read with the corresponding function. If you must
write binary files, Crestron recommends the first way, for system independence.
Details are listed in each function.

118 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

CheckForDisk

Name:
CheckForDisk

Syntax:
INTEGER CheckForDisk()

Description:
Tests whether or not a compact flash card is currently installed in the control system.

Parameters:

None.

Return Value:

Returns 1 if acompact flash card is currently installed in the control system. Refer to
“WaitForNewDisk()” on page 184.

Example:
(Refer to “File Functions Overview” on page 116)

IF (CheckForDisk O = 1)
PRINT (“compact flash card found”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 119

Software Crestron SIMPL+®

EndFileOperations

Name:
EndFileOperations

Syntax:
SIGNED_INTEGER EndFileOperations()

Description:

Signifies to the operating system that the current thread has completed itsfile
operations.

Parameters:

None.

Return Value:

Returns 0 if successful and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF (StartFileOperations() < 0);

PRINT (“Error in starting file ops\n”);

// various Tile operations

IF (EndFileOperations() < 0)

PRINT (“Error Occurred in ending file ops\n”);

EndFileOperationsis required after finishing all file operations and prior to

ﬂ NOTE: StartFileOperationsis required prior to any operation accessing afile.
terminating the thread of execution (e.g., one of the PUSH commands).

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

120 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

FileBOF

Name:
FileBOF

Syntax:
SIGNED_INTEGER FileBOF (INTEGER handle)

Description:
Tests whether or not the current file pointer is at the beginning of thefile.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:

Returns 1 if beginning of file or 0 if not end of file. Otherwise, file error code is
returned.

Example:

(Refer to "File Functions Overview"on page 116)
SIGNED_INTEGER nFileHandle;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle < 0)

{
PRINT(*“Error Opening File MyFile\n”);
return;
}
IF (FileBOF (nFileHandle) =1)
PRINT (“Beginning of file reached\n”);
IF (FileClose (nFileHandle) <> 0)
PRINT (“Error closing file”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 121

Software Crestron SIMPL+®

FileClose

Name:
FileClose

Syntax:
SIGNED_INTEGER FileClose (INTEGER handle)

Description:

Closes afile opened previously by FileOpen. You MUST close afile that was
opened, youwon’'t beableto openit again, or eventually the control system may hang
or reboot. A reboot clears al open files. Files must be opened and closed during a
single thread of operation. Refer to “ StartFileOperations()” on page 183.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:

Returns O if successful. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle < 0)

{
PRINT(*“Error Opening File MyFile\n”);
return;

}

IF (nFileHandle > 0)

{
IF (FileClose (nFileHandle) <> 0)
PRINT (“Error closing file\n”);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

122 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

FileDate

Name:
FileDate

Syntax:
STRING FileDate(FILE_INFO Info, INTEGER FORMAT);

Description:

Returns a string corresponding to the current date of the specified file with the
specified FORMAT.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

FORMAT isan integer describing the way to format the date for the return. Valid
formats are 1 through 4.

FORMAT 1returnsastring in the form MM/DD/YYYY
FORMAT 2 returns a string in the form DD/MM/YYYY
FORMAT 3returnsastring intheform YYYY/MM/DD
FORMAT 4 returns a string in the form MM/DD/Y'Y

Informat 4, the year 2000 is shown as 00. Digits 58 - 99 aretreated as 1958-1999 and
00-57 are treated as 2000 through 2057.

Return Value:
A STRING corresponding to the current date.

Language Reference Guide - DOC. 5797G SIMPL+® @ 123

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheDate$[100];

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);

WHILE (Found = 0)

{
TheDate$ = FileDate(Filelnfo);
PRINT (“Date of file = %s\n”, TheDate$);
Found = FindNext(Filelnfo);

¥

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

Thiswould print a string such as “Date of file= 03/25/2003".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

124 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileDay

Name:
FileDay

Syntax:
STRING FileDay(FILE_INFO Info);

Description:
Returns the day of the week of the fileasa STRING.

Parameters:

INFO — structure containing the information about a found file (refer to “FindFirst”
on page 149 for description).

Return Value:

The day of the week of thefileisreturned in astring. Valid returns are Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, or Saturday.

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheDay$[100];

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
TheDay$ = FileDay(Filelnfo);
PRINT (“Day of file = %s\n”, TheDay$);
Found = FindNext(Filelnfo);

¥

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

An example output of thiswould be “Day of file = Monday”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 125

Software Crestron SIMPL+®

FileDelete

Name:
FileDelete

Syntax:
SIGNED_INTEGER FileDelete (STRING filename)

Description:
Deletes the specified file from the file system.

Parameters:

FILENAME specifies the name of the file to delete. Can contain wildcards (*) if a
full path is not given.

Return Value:

Returns O if successful. Otherwise, file error code is returned.

Example:

(Refer to "File Functions Overview"on page 116)

StartFileOperations();
IF (FileDelete (“MyFile”) <> 0)

PRINT (“Error deleting file\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

126 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

FileEOF

Name:
FileEOF

Syntax:
SIGNED_INTEGER FileEOF (INTEGER handle)

Description:

Tests whether or not the current file pointer is at the end of thefile.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:

Returns 1 if end of file or 0 if not end of file. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle < 0)

{
PRINT(*“Error Opening File MyFile\n”);
return;

}

IF (FileEOF (nFileHandle) = 1)
PRINT (“End of file reached\n”);

IF (FileClose (nFileHandle) <> 0)
PRINT (“Error closing file\n”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 127

Software

Crestron SIMPL+®

FileGetDateNum

Name:
FileGetDateNum

Syntax:
SIGNED_INTEGER FileGetDateNum(FILEINFO Info);

Description:
Returns an integer corresponding to the day of the month of thefile.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The day of the month as an integer from 1 to 31.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumDateOfMonth;

FILE_INFO Filelnfo;

INTEGER Found;

StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
NumDateOfMonth = FileGetDateNum(Filelnfo);
PRINT (“Day of the month of file = %d\n”, NumDateOfMonth);
Found = FindNext(Filelnfo);

}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of thiswould be “Day of the month of file= 25",

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

128 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileGetDayOfWeekNum

Name:
FileGetDayOfWeekNum

Syntax:
SIGNED_INTEGER FileGetDayOfWeekNum(FILEINFO Info);

Description:
Returns an integer corresponding to the day of the week of file.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

The day of the week as an integer from 0 to 6; O represents Sunday to 6 representing
Saturday.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumDayOfWeek;

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
NumDayOfWeek = FileGetDayOfWeekNum(Filelnfo);
PRINT (“Day of week of file = %d\n”, NumDayOfWeek);
Found = FindNext(Filelnfo);

}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

An example output of thiswould be “Day of week of file=4".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 129

Software Crestron SIMPL+®

FileGetHourNum

Name:
FileGetHourNum

Syntax:
SIGNED_INTEGER FileGetHourNum(FILEINFO Info);

Description:
Returns an integer corresponding to the number of hoursin the time of thefile.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The number of hours from 0 to 23 (24-hour time format).

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumHours;

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);

WHILE (Found = 0)

{
NumHours = FileGetHourNum(Filelnfo);
PRINT (““Hours of file time = %d\n”, NumHours);
Found = FindNext(Filelnfo);

¥

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

An example output of thiswould be “Hours of filetime = 22".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

130 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileGetMinutesNum

Name:
FileGetMinutesNum

Syntax:
SIGNED_INTEGER FileGetMinutesNum(FILEINFO Info);

Description:
Returns an integer corresponding to the number of minutesin thefiletime.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

The number of minutes from 0 to 59.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumMinutes;

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
NumMinutes = FileGetMinutesNum(Filelnfo);
PRINT (“Minutes of file time = %d\n”, NumMinutes);
Found = FindNext(Filelnfo);

¥

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);

EndFileOperations();
An example output of thiswould be “Minutes of filetime= 33".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 131

Software Crestron SIMPL+®

FileGetMonthNum

Name:
FileGetMonthNum

Syntax:
SIGNED_INTEGER FileGetMonthNum(FILEINFO Info);

Description:
Returns an integer corresponding to the month of the year of file.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149).

Return Value:
The month of the year as an integer from 1 to 12.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumMonth;

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
NumMonth = FileGetMonthNum(Filelnfo);
PRINT (“Month of file date = %d\n”, NumMonth);
Found = FindNext(Filelnfo);

¥

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);

End File Operations()
An example output of thiswould be “Month of file date =9".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

132 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileGetSecondsNum

Name:
FileGetSecondsNum

Syntax:
SIGNED_INTEGER FileGetSecondsNum(FILEINFO Info);

Description:
Returns an integer corresponding to the number of secondsin the time of thefile.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

The number of seconds from 0 to 59.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumSeconds;

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
NumSeconds = FileGetSecondsNum(Filelnfo);
PRINT (““Seconds of file time = %d\n”, NumSeconds);
Found = FindNext(Filelnfo);

}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);

EndFileOperations();
An example output of thiswould be “ Seconds of filetime = 25".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 133

Software

Crestron SIMPL+®

FileGetYearNum

Name:
FileGetY earNum

Syntax:

SIGNED_INTEGER FileGetYearNum(FILEINFO Info);

Description:

Returns an integer corresponding to the year of thefile.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

Theyear asan integer. The full year is specified. For example, the year 2000 will
return the integer 2000.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumYear;

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
NumYear = FileGetYearNum(Filelnfo);
PRINT (“Year of file date = %d\n”’, NumYear);
Found = FindNext(Filelnfo);

¥

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

An example output from thiswould be “Y ear of file date = 2002”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

134 @ SIMPL+®

Language Reference Guide - DOC

.5797G

Crestron SIMPL+®

Software

1

FILE_INFO Structure

Use this structure to retrieve information about afile.

STRUCTURE FILE_INFO
{

STRING Name;

INTEGER iAttributes;
INTEGER iTime;
INTEGER iDate;
LONG_INTEGER ISize;

¥

// relative name of the fou
// attributes for the file
// fTile time in packed form
// file date in packed form
// size of the Ffile in byte

File Attribute Bit Flags - These may be Bitwise OR’ ed together

nd file

S

KEYWORD |ATTRIBUTE Equivalent SIMPL+ Function
ARDONLY File is marked read only IsReadOnly
AHIDDEN File is hidden IsHidden
ASYSTEM File is marked as a system file IsSystem
AVOLUME File is a volume label IsVolume
ADIRENT File is a directory IsDirectory
ARCHIVE File is marked as an archive -
Version:

SIMPL+ Version 3.00.02 or higher (Pro 2 only)

NOTE: For an example of how and where to use the FILE_INFO structure, refer to
the example codein "FindFirst" on page 149.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 135

Software

Crestron SIMPL+®

FileLength

Name:
FileLength

Syntax:
LONG_INTEGER FileLength (INTEGER handle)

Description:
Returns the length of afile.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:

Number of bytesif successful. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle < 0)
{
PRINT(*“Error Opening File MyFile\n™);
return;
}
IF (nFileHandle > 0)
PRINT (“Length of file = %d\n”,
FileLength (nFileHandle));
IF (FileClose (nFileHandle) <> 0)
PRINT (“Error closing file\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

136 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileMonth

Name:
FileMonth

Syntax:
STRING FileMonth(FILEINFO Info);

Description:

Returns the month of the file date as a string.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

Thecurrent monthisreturned in astring. Valid returns are January, February, March,
April, May, June, July, August, September, October, November, or December.

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheMonth$[100];

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
TheMonth$ = FileMONTH(Filelnfo);
PRINT (“Month of file date = %s\n”, TheMonth$);
Found = FindNext(Filelnfo);

}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

An example output of thiswould be “Month of file date = September”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 137

Software

Crestron SIMPL+®

1

FileOpen

Name:
FileOpen

Syntax:
SIGNED_INTEGER FileOpen (STRING filename, INTEGER flags)

Description:

Opens afile.

Parameters:

FILENAME specifies the full path name or relative path name (link) of the fileto
open/create.

FLAGS - File Open Flags. Can be combined using the Bitwise OR operator ()

NOTE: Oneof thefollowing flagsmust be specified: O RDONLY, O WRONLY,
or_O_RDWR

KEYWORD FUNCTION

_O_TEXT Unused

_O_BINARY Unused

_O_APPEND Writes done at the end of file. Mutually exclusive with
_O_TRUNC

_O_CREAT Creates file. If _O_APPEND is specified, the file will created
only if it doesn't already exist.

_O_EXCL Open succeeds only if file doesn't already exist

_O_TRUNC Truncates file. Mutually exclusive with _O_APPEND

_O_RDONLY Open file for reading only

_O_RDWR Open file for both reading and writing

_O_WRONLY Open file for writing only

Return Value:

File handle if successful (>= 0). Otherwise, file error code is returned.

NOTE: FileClose() must be called before the executing thread isterminated. Failure
todo sowill result in the file being | eft open and locked by the control system. Should
this happen, the file will not be able to be opened again until the control system is
rebooted.

138 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Examples:
(Refer to "File Functions Overview"on page 116)

Example 1: Open aread only file:
SIGNED_INTEGER nFileHandle;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O RDONLY);
IF (nFileHandle < 0)
{
PRINT(“Error Opening File MyFile\n”);
}
EndFileOperations();
Example 2: Open an existing file to log data to the end
SIGNED_INTEGER nFileHandle;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WDONLY | _O_APPEND);
IF (nFileHandle < 0)
{
PRINT(*“Error Opening File MyFile\n”);
}
EndFileOperations();
Example 3: Truncate an existing file and get rid of previous contents. If it does not
exist, create it.
SIGNED_INTEGER nFileHandle;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O _WDONLY | _O_CREAT |

_O_TRUNC);
IF (nFileHandle < 0)
{
PRINT(*“Error Opening File MyFile\n”);
}

EndFileOperations();
Example 4: Continue adding to the end of an existing log file, or createit if it does
not already exist.
SIGNED_INTEGER nFileHandle;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WDONLY | _O_APPEND

| _O_CREAT);
IF (nFileHandle < 0)
{
PRINT(*“Error Opening File MyFile\n”);
}

EndFileOperations();

Language Reference Guide - DOC. 5797G SIMPL+® @ 139

Software Crestron SIMPL+®

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

140 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

1

FileRead

Name:
FileRead

Syntax:

SIGNED_INTEGER FileRead (INTEGER handle, STRING buffer,
INTEGER count)

Description:

Reads data from afile as a series of bytesinto a buffer, starting at the current file
position. Refer to the section entitled “ Reading and Writing Data to aFile” on page
118 for adiscussion of when to use thisfunction and when to usetherelated functions
FileRead, ReadInteger, ReadString, ReadStructure, ReadSignedinteger,

Readl onglnteger, Readl ongSignedinteger, ReadlntegerArray,
ReadSignedintegerArray, Readl onglntegerArray, Readl ongSignedintegerArray,
ReadStringArray

To avoid an error being generated to the console, use FileEOR() to test for the end of
the file prior to reading.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).
BUFFER isthe destination variable for bytes that are read.
COUNT specifies the number of bytesto read.

Return Value:

Number of bytesread from file. If the return value is negative, it is an error code.
Refer to “File Function Error Codes’ on page 117.

Language Reference Guide - DOC. 5797G SIMPL+® @ 141

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;

STRING sBuf [100];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)

{
WHILE (FileRead(nFileHandle, sBuf, 4096) > 0)
PRINT (“Read from file: %s\n”, sBuf);
IF (FileClose (nFileHandle) <> 0)
PRINT (“Error closing file\n”);
}

EndFileOperations();

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only

142 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileSeek

Name:
FileSeek
Syntax:

SIGNED_INTEGER FileSeek (INTEGER handle, LONG_INTEGER
offset, INTEGER origin)

Description:

Positions the current file pointer.

Parameters:

HANDLE specifies the file handle of previously opened file (from FileOpen).
OFFSET specifies the number of bytes to move relative to the origin.
ORIGIN ison of the file seek flagsin the following table.

FileSeek Flags:
KEYWORD FUNCTION
SEEK_SET Start seeking from beginning of file
SEEK_CUR Start seeking from current position in file
SEEK_END Start seeking from end of file

Return Value:

Number of bytes offset from the beginning of file. Otherwise, file error code is
returned.

Example:

(Refer to "File Functions Overview"on page 116)

SIGNED_ INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen(“MyFile”, _O RDONLY);
IF (nFileHandle >= 0)
{
IF (FileSeek(nFileHandle, 0, SEEK_SET)) < 0)
PRINT (“Error seeking file\n”);
IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);
EndFileOperations();

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 143

Software Crestron SIMPL+®

Other Examples:
1. Go to beginning of file: FileSeek (nFileHandle, O, SEEK_SET)
2. Goto end of file: FileSeek (nFileHandle, O, SEEK_END)

3. Get current file position: CurrentBytePosition= FileSeek (nFileHandle,O,
SEEK_CUR)

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

144 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FileTime

Name:

FileTime

Syntax:
STRING FileTime(FILEINFO Info);

Description:

Returns a string containing the current system time.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

Thereturn string contains thetimein HH:MM:SSformat, in 24-hour time. If avalue
isnot two digitswide, it is padded with leading zeros.

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheTime$[100];

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(**.dat”, Filelnfo);
WHILE (Found = 0)

{
TheTime$=TIMEQ;
PRINT (“File time = %s\n”, TheTime$);
Found = FindNext(Filelnfo);

}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();
An example output from this would be “File time = 14:25:32".

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 145

Software Crestron SIMPL+®

FileWrite

Name:
FileWrite

Syntax:

SIGNED_INTEGER FileWrite (INTEGER handle, STRING buffer,
INTEGER count)

Description:

Writes data from afile as a series of bytesinto abuffer, starting at the current file
position. Refer to the section entitled “ Reading and Writing Datato aFile” on page
118for adiscussion of when to use thisfunction and when to usetherelated functions
FileWrite, Writel nteger, WriteString, WriteStructure, WriteSignedInteger,

Writel onglnteger, WriteL ongSignedinteger, WritelntegerArray,
WriteSignedintegerArray, Writel onglntegerArray, WriteL ongSignedintegerArray,
WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).
BUFFER isthe variable containing the bytes to be written.
COUNT specifies the number of bytes to write.

Return Value:
Number of byteswritten to thefile. If the return valueis negative, it isan error code.

146 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
STRING sBuf [4096];
StartFileOperations();
sBuf = “Hello World!”;
nFileHandle = FileOpen (“MyFile”, _O WRONLY);
IF (nFileHandle >= 0)
{
if(FileWrite(nFileHandle, sBuf, 4096) > 0)
PRINT (“Written to file: %s\n”, sBuf);
IF (FileClose (nFileHandle) <> 0)
PRINT (“Error closing file\n”);

}
EndFileOperations();

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 147

Software Crestron SIMPL+®

FindClose

Name:
FindClose

Syntax:
SIGNED_INTEGER FindClose()

Description:
Signifies to the operating system that the find operation has ended.

Parameters:

None.

Return Value:

Returns 0 if successful and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)

{
PRINT (“%s\n”, Filelnfo.Name);

Found = FindNext(Filelnfo);

}
IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

148 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

FindFirst

Name:
FindFirst

Syntax:

SIGNED_INTEGER FindFirst(STRING filespec, FILE_INFO
info)

Description:

This command searches a directory for file(s) matching the given file specification.
Always followed with a FindClose, refer to page 148.
Requires StartFileOperations(), refer to page 183.

Parameters:
FILESPEC specifiesthe filename to ook for. It can be afull path name or arelative
path name with wildcards (the ‘*’ character), refer to page 14.
INFO — FILE_INFO structure containing the information about a found
file:
File Attribute Bit Flags: - May be checked with bitwise and character.

KEYWORD |ATTRIBUTE

ARDONLY File is marked read only
AHIDDEN File is hidden

ASYSTEM File is marked as a system file
AVOLUME File is a volume label
ADIRENT File is a directory

ARCHIVE File is marked as archived

Return Value:

Returns 0 if afileis found matching the specification and —1 if an error occurred.

Language Reference Guide - DOC. 5797G SIMPL+® @ 149

Software

Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;
SIGNED_INTEGER Found;
StartFileOperations();
Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)
{
it ((Filelnfo.File Attributes&ADIRENT) <>0)
PRINT (“%s is a directory\n”, Filelnfo.Name
Else
PRINT (“%s is a file\n”,Filelnfo.Name
Found = FindNext(Filelnfo);
}
IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

NOTE: FindFirst must be followed by a FindClose.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

150 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

FindNext

Name:
FindNext

Syntax:
SIGNED_INTEGER FindNext(FILE_INFO info)

Description:

This command continues the current directory for file(s) matching the file
specification in the "FindFirst" command.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

Returns 0 if afileis found matching the specification and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

FILE _INFO Filelnfo;
SIGNED_INTEGER Found;
StartFileOperations();
Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)
{
PRINT (“%s\n”, Filelnfo.Name);
Found = FindNext(Filelnfo);
¥
IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

ﬂ NOTE: FindNext must be followed by a FindClose.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 151

Software

Crestron SIMPL+®

GetCurrentDirectory

Name:
GetCurrentDirectory

Syntax:
STRING GetCurrentDirectory()

Description:
Returns the compl ete path name of the current working directory. Refer to “ Relative
Path Names” on page 14 for adiscussion of setting the current directory.

Parameters:

None.

Return Value:

String containing the current directory. If an error occurs, string length equals O.

Example:
(Refer to "File Functions Overview"on page 116)

PRINT(“The current directory
GetCurrentDirectory());

%s\n”,

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

152 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

IsDirectory

Name:
IsDirectory

Syntax:
INTEGER IsDirectory(FILE_INFO info)

Description:

This routine returns whether the specified file is a directory, equivalent to checking
info;Attributes.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for a description).

Return Value:

Returns 1if fileisadirectory and O otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)

{
it (IsDirectory(Filelnfo))
PRINT(“%s is a directory\n”, Filelnfo.Name);
Found = FindNext(Filelnfo);
}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.0x (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 153

Software Crestron SIMPL+®

IsHidden

Name:
IsHidden

Syntax:
INTEGER IsHidden(FILE_INFO info)

Description:

This routine returns whether the specified file is hidden. Equivelent to checking
attributesin FILE_INFO. Refer to page 135.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1 if fileishidden and O if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)

{
it (IsHidden(Filelnfo))
PRINT(C “%s is hidden\n”, Filelnfo.FileName);
Found = FindNext(Filelnfo);
}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

154 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

IsReadOnly

Name:
IsReadOnly

Syntax:
INTEGER IsReadOnly(FILE_INFO info)

Description:

This routine returns whether the specified file is marked as read-only. Equivalent to
checking attributesin FILE_INFO. Refer to page 135.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1if fileisread-only and O if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)

{
it (IsReadOnly(Filelnfo))
PRINT(“%s is read-only\n”, Filelnfo.Name);
Found = FindNext(Filelnfo);
}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 155

Software Crestron SIMPL+®

IsSystem

Name:
|SSystem

Syntax:
INTEGER 1sSystem(FILE_INFO info)

Description:

Thisroutinereturnswhether the specified fileisasystemfile. Equivalent to checking
attributesin FILE_INFO. Refer to page 135.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1if fileisa system fileand O if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)

{
it (IsSystem(Filelnfo))
PRINT(“%s is a system Ffile\n”, Filelnfo.Name);
Found = FindNext(Filelnfo);
}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

156 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

IsVolume

Name:

IsVolume

Syntax:
INTEGER IsVolume(FILE_INFO info)

Description:

This routine returns whether the specified file is avolume label. Equivalent to
checking attributesin FILE_INFO. Refer to page 135.

Parameters:

INFO — structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:

Returns 1 if fileisavolume label and O if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO Filelnfo;

SIGNED_INTEGER Found;
StartFileOperations();

Found = FindFirst(“*.dat”, Filelnfo);
WHILE (Found = 0)

{
it (I1sVolume(Filelnfo))
PRINT(C “volume label = %s\n”, Filelnfo.Name);
Found = FindNext(Filelnfo);
}

IF (FindClose() < 0)
PRINT (“Error in closing find operation\n”);
EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 157

Software

Crestron SIMPL+®

MakeDirectory

Name:
MakeDirectory

Syntax:
SIGNED_INTEGER MakeDirectory(STRING DirName)

Description:

Creates adirectory with the specified name. The path name can be relative or
absolute, refer to page 14. Requires StartFileOperations(), refer to page 183.

Parameters:
DIRNAME — string containing the name of the desired directory.

Return Value:

Returns 0 if successful and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF(MakeDirectory(“NewDirect™) < 0)
PRINT(“Error occurred creating directory\n™);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

158 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadInteger

Name:
ReadlI nteger

Syntax:

SIGNED_INTEGER Readlnteger (INTEGER file_handle,
INTEGER 1)

Description:

Reads an integer from afile starting at the current file position. Two bytes are read,
most significant bytefirst. Refer to the section entitled “ Reading and Writing Datato
aFile” on page 118 for a discussion of when to use this function and when to use the
related functions: FileRead, Readl nteger, ReadString, ReadStructure,

ReadSignedi nteger, ReadL onglnteger, ReadlL ongSignedi nteger, ReadintegerArray,
ReadSignedintegerArray, ReadL onglntegerArray, ReadlL ongSignedintegerArray,
ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

| istheinteger whose valueisread.

Return Value:

Number of bytes read from file. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 159

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
INTEGER 1i;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{

iErrorCode = Readlnteger(nFileHandle, i);
if (iErrorCode > 0)

PRINT (“Read integer from file correctly.\n”);
else

PRINT (“Error code %d\n”, iErrorCode);
ks
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

160 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

ReadIntegerArray

Name:
ReadIntegerArray

Syntax:

SIGNED_INTEGER ReadlntegerArray(INTEGER file_handle,
INTEGER iArray[m][n])

Description:

Reads the array from afile starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
are read, containing the column dimension of the array. Then each integer isread as
atwo byte quantity, most significant byte first. The integers are stored in row-major
order, e.g. al the elements of row O first, then the elements of row 1, etc. Note that
there is one more row and one more column than the dimensions that are read,
because there isarow 0 and a column 0. Refer to the section entitled “ Reading and
Writing Datato aFile” on page 118 for adiscussion of when to use this function and
whento usetherelated functions: FileRead, Readl nteger, ReadString, ReadStructure,
ReadSignedi nteger, Readl onglnteger, Readl ongSignedi nteger, ReadintegerArray,
ReadSignedintegerArray, Readl onglntegerArray, Readl ongSignedintegerArray,
ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).
IARRAY isthe array whose values are read.

Return Value:

Number of bytesread fromfile. If thereturn valueis negative, it isan error code. An
error occurs if the array is not large enough to hold the data.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 161

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
INTEGER iArray[10];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{

iErrorCode = ReadlntegerArray(nFileHandle, iArray);
if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n");
else

PRINT (“Error code %d\n”, iErrorCode);
ks
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

162 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadLonglInteger

Name:
ReadL ongl nteger

Syntax:

SIGNED_INTEGER ReadLonglnteger (INTEGER file_handle,
LONG_INTEGER i)

Description:

Reads along integer from afile starting at the current file position. Four bytes are
read, most significant byte first and least significant byte last. Refer to the section
entitled “ Reading and Writing Datato aFile” on page 118 for a discussion of when
to use this function and when to use the related functions: FileRead, Readlnteger,
ReadString, ReadStructure, ReadSignedinteger, Readl onglnteger,

Readl ongSignedi nteger, ReadlntegerArray, ReadSignedintegerArray,

Readl onglntegerArray, ReadlL ongSignedintegerArray, ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).

LI isthe long integer whose valueis read.

Return Value:

Number of bytes read from file. If the return value is negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 163

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
LONG_INTEGER Ii;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{

iErrorCode = ReadLonglnteger(nFileHandle, 1i);
if (iErrorCode > 0)

PRINT (“Read long integer from file correctly.\n”);
else

PRINT (“Error code %d\n”, iErrorCode);
T
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

164 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

ReadLonglIntegerArray

Name:
Readl onglntegerArray

Syntax:

SIGNED_INTEGER ReadLonglntegerArray (INTEGER
file_handle,

LONG_INTEGER ilArray[m][n])

Description:

Reads the array from afile starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
areread, containing the column dimension of thearray. Then each long integer isread
as afour byte quantity, most significant byte first. The integers are stored in row-
major order, e.g. all the elements of row O first, then the elements of row 1, etc. Note
that there is one more row and one more column than the dimensions that are read,
because there isarow 0 and a column 0. Refer to the section entitled “ Reading and
Writing Datato aFile” on page 118 for adiscussion of when to use this function and
whento usetherelated functions: FileRead, Readl nteger, ReadString, ReadStructure,
ReadSignedi nteger, Readl onglnteger, Readl ongSignedi nteger, ReadintegerArray,
ReadSignedintegerArray, Readl onglntegerArray, Readl ongSignedintegerArray,
ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read

functions.

An error occursif the array is not long enough to hold the data.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

ilArray isthe array whose values are read.

Return Value:
Number of bytesread from file. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 165

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
LONG_INTEGER ilArray[10];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{

iErrorCode = ReadLonglntegerArray(nFileHandle, ilArray);
if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n);
else

PRINT (“Error code %d\n”, iErrorCode);
ks
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

166 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadSignedinteger

Name:
ReadSigned| nteger

Syntax:
SIGNED_INTEGER ReadSignedInteger (INTEGER file_handle,
SIGNED_INTEGER si)

Description:

Reads a signed integer from afile starting at the current file position. Two bytes are
read, most significant first. Refer to the section entitled “Reading and Writing Data
toaFile” on page 118 for a discussion of when to use this function and when to use
the related functions: FileRead, ReadInteger, ReadString, ReadStructure,
ReadSignedi nteger, Readl onglnteger, Readl ongSignedi nteger, ReadintegerArray,
ReadSignedintegerArray, Readl onglntegerArray, Readl ongSignedintegerArray,

ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:
FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).
Sl isthe signed integer whose value is read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 167

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
SIGNED_INTEGER si;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{
iErrorCode = ReadSignedInteger(nFileHandle, si);
if (iErrorCode > 0)
PRINT (“Read signed integer from file correctly\n™);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

168 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

ReadSignedintegerArray

Name:
ReadSignedintegerArray

Syntax:

SIGNED_INTEGER ReadSignedIntegerArray (INTEGER
file_handle,

SIGNED_INTEGER isArray[m][n])

Description:

Reads the array from afile starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
are read, containing the column dimension of the array. Then each signed integer is
read as atwo byte quantity, most significant bytefirst. Theintegers are stored in row-
major order, e.g. all the elements of row O first, then the elements of row 1, etc. Note
that there is one more row and one more column than the dimensions that are read,
because thereisarow 0 and a column 0. Refer to the section entitled “ Reading and
Writing Datato aFile” on page 118 for adiscussion of when to use this function and
whento usetherelated functions: FileRead, Readl nteger, ReadString, ReadStructure,
ReadSignedi nteger, Readl ongl nteger, Readl ongSignedi nteger, ReadintegerArray,
ReadSignedintegerArray, Readl onglntegerArray, Readl ongSignedintegerArray,
ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).
ISARRAY isthe array whose values are read.

Return Value:

Number of bytesread fromfile. If thereturn valueis negative, it isan error code. An
error occursif the array is not large enough to hold the data.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 169

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
SIGNED_INTEGER isArray[10][5]1;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)

{

iErrorCode = ReadSignedIntegerArray(nFileHandle, isArray);
if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n);
else

PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

170 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadSignedLonglinteger

Name:
ReadSignedL ongl nteger

Syntax:

SIGNED_INTEGER ReadSignedLonglnteger (INTEGER
file_handle,

SIGNED_LONG_INTEGER sli)

Description:

Reads data from afile starting at the current file position. Each element of the
structure isread, without any padding bytes, that might actually be therein memory.
Refer to the section entitled “ Reading and Writing Datato aFile” on page 118 for a
discussion of when to use this function and when to use the related functions:
FileRead, ReadInteger, ReadString, ReadStructure, ReadSignedinteger,

Readl onglnteger, Readl ongSignedinteger, ReadlntegerArray,
ReadSignedintegerArray, Readl onglntegerArray, Readl ongSignedintegerArray,
ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).

SLI isthe signed long integer whose value is read.

Return Value:

Number of bytes read from file. If the return value is negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 171

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
SIGNED_LONG_INTEGER sli;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{
iErrorCode = ReadSignedLonglnteger(nFileHandle, sli);
if (iErrorCode > 0)
PRINT (“Read from file correctly.\n”);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

172 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

1

ReadSignedLonglintegerArray

Name:
ReadSignedL onglntegerArray

Syntax:

SIGNED_INTEGER ReadSignedLonglntegerArray (INTEGER
file_handle,

SIGNED_LONG_INTEGER sliArray[m][n])

Description:

Reads the array from afile starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
areread, containing the column dimension of thearray. Then each signed long integer
isread as afour byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. al the elements of row O first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
read, because thereisarow 0 and a column 0. Refer to the section entitled “ Reading
and Writing Datato aFile” on page 118 for a discussion of when to use thisfunction
and when to use the related functions: FileRead, ReadInteger, ReadString,
ReadStructure, ReadSignedinteger, Readl onglnteger, Readl ongSignedi nteger,
ReadIntegerArray, ReadSignedintegerArray, Readl onglntegerArray,

Readl ongSignedintegerArray, ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).

SLIARRAY isthe array whose values are read.

Return Value:

Number of bytes read from file. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 173

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_LONG_INTEGER sliArray[10][5]1;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)

{

iErrorCode = ReadSignedLonglntegerArray(nFileHandle,
sliArray);

if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n);
else

PRINT (“Error code %d\n””, iErrorCode);

¥
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

174 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadString

Name:
ReadString

Syntax:

SIGNED_INTEGER ReadString (INTEGER file_handle, STRING
s)

Description:

Reads a string from afile starting at the current file position. Internally, the string is
stored as a 2-byte length, most significant byte first, then the actual string bytes. In
the case of astring variable, the total number of bytes written is calculated from the
size of the string, not the string all ocation size. Refer to the section entitled “ Reading
and Writing Datato aFile” on page 118 for a discussion of when to use thisfunction
and when to use the related functions: FileRead, ReadInteger, ReadString,
ReadStructure, ReadSignedinteger, ReadL onglnteger, ReadlL ongSignedi nteger,
ReadIntegerArray, ReadSignedintegerArray, Readl onglntegerArray,

ReadlL ongSignedintegerArray, ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).

Sisthe string whose value is read.

Return Value:

Number of bytes read from file into the string. If the return valueis negative, itisan
error code. An error occursif the string is not large enough to hold the data.

Language Reference Guide - DOC. 5797G SIMPL+® @ 175

Software Crestron SIMPL+®

Example:

(Refer to "File Functions Overview"on page 116)
SIGNED_INTEGER nFileHandle, iErrorCode;
STRING s[100];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{
iErrorCode = ReadString(nFileHandle, s);
if (iErrorCode > 0)
PRINT (“Read string from file correctly.\n");
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

176 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadStringArray

Name:
ReadStringArray

Syntax:

SIGNED_INTEGER ReadStringArray (INTEGER file_handle,
STRING s[])

Description:

Reads a string from afile starting at the current file position. Internally, the string is
stored with the first 2 bytes indicating the total number of string written, then each
string follows as a 2-byte length, most significant byte first, then the actual string
bytes. Inthe case of astring variable, the total number of bytesisthe calculated from
the size of the string, not the string allocation size. Refer to the section entitled
“Reading and Writing Datato aFile” on page 118 for adiscussion of whento usethis
function and when to use the related functions. FileRead, Readlnteger, ReadString,
ReadStructure, ReadSignedinteger, ReadL onglnteger, ReadlL ongSignedi nteger,
ReadIntegerArray, ReadSignedintegerArray, Readl onglntegerArray,

ReadlL ongSignedintegerArray, ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).

Sisthe string whose value is read.

Return Value:

Number of bytes read from file into the string. If the return valueis negative, itisan
error code. An error occursif the array is not large enough to hold the data.

Language Reference Guide - DOC. 5797G SIMPL+® @ 177

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
STRING s[100][100];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_RDONLY);
IF (nFileHandle >= 0)
{
iErrorCode = ReadStringArray(nFileHandle, s);
if (iErrorCode > 0)
PRINT (“Read string from file correctly.\n");
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

178 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ReadStructure

Name:
ReadStructure

Syntax:

ReadStructure (INTEGER nFileHandle, STRUCTURE struct [,
INTEGER nTotalBytesRead])

Description:

Reads data from afile starting at the current file position. Each element of the
structure isread, without any padding bytes, that might actually be therein memory.
Refer to the section entitled “ Reading and Writing Datato a File” on page 118 for a
discussion of when to use this function and when to use the related functions:
FileRead, ReadInteger, ReadString, ReadStructure, ReadSignedinteger,

ReadL onglnteger, Readl ongSignedinteger, ReadlntegerArray,
ReadSignedintegerArray, ReadL onglntegerArray, ReadlL ongSignedintegerArray,
ReadStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Thereis no error if the structure does not match the data.

Parameters:
nFileHandle - File handle of the previously opened file (from FileOpen).
struct - Structure variable that will receive data read from file

nTotal BytesRead - optional argument. INTEGER variable that will contain the total
number of bytes read from the file into the structure.

Return Value:

None.

Language Reference Guide - DOC. 5797G SIMPL+® @ 179

Software

Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, nTotalBytesRead;
STRUCTURE PhoneBookEntry
{
STRING Name[50];
STRING Address[100];
STRING PhoneNumber[20];
}:
PhoneBookEntry OneEntry;
StartFileOperations();
nFileHandle = FileOpen (“MyFile.txt”, _O_RDONLY);
it (nFileHandle >= 0)

{
ReadStructure(nFileHandle, PhoneBookEntry,
nTotalBytesRead);
if(nTotalBytesRead < 0)
PRINT (“Error reading structure. Error code = %d\n”,
nTotalBytesRead);
else
PRINT (“Read structure from file correctly. Total
bytes read = %d\n”, nTotalBytesRead);
¥

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

180 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

RemoveDirectory

Name:

RemoveDirectory

Syntax:
SIGNED_INTEGER RemoveDirectory(STRING DirName)

Description:

Removes the directory with the specified name. The path name can be arelative link
or absolute, refer to page page 14. Must be empty. Requires StartFileOperations(),
refer to page page 183.

Parameters:
DIRNAME — string containing the name of the desired directory.

Return Value:

Returns 0 if successful and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF(RemoveDirectory(“NewDirect”) < 0)
PRINT(“Error occurred deleting directory\n™);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 181

Software

Crestron SIMPL+®

SetCurrentDirectory

Name:
SetCurrentDirectory

Syntax:
SIGNED_INTEGER SetCurrentDirectory(STRING DirName)

Description:
Changestheworking directory to the specified name. Refer to “ Rel ative Path Names”

on page 14.

Parameters:
DIRNAME — string containing the name of the desired directory.

Return Value:

Returns 0 if successful and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)
IF(SetCurrentDirectory(“NewDirect™) < 0)

PRINT(“Error occurred creating directory\n™);
PRINT(“Directory is now: %s\n”, GetCurrentDirectory());

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

182 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

StartFileOperations

Name:
StartFileOperations

Syntax:
SIGNED_INTEGER StartFileOperations()

Description:
Signifies to the operating system that the current thread is starting its file operations.

Parameters:

None.

Return Value:

Returns 0 if successful and —1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF (StartFileOperations() < 0)

PRINT (“Error in starting file ops\n”);

// various Tile operations

IF (EndFileOperations() < 0)

PRINT (“Error Occurred in ending file ops\n”);

EndFileOperationsis required after finishing all file operations and prior to

ﬂ NOTE: StartFileOperationsis required prior to any operation accessing afile.
terminating the thread of execution (e.g., one of the PUSH commands).

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 183

Software Crestron SIMPL+®

WaitForNewDisk

Name:
WaitForNewDisk

Syntax:
SIGNED_INTEGER WaitForNewDisk()

Description:

Waits for a compact flash card to be inserted into the control system. Refer to
“CheckForDisk” on page 119.

Parameters:

None.

Return Value:

Returns 0 when anew compact flash card isinstalled into the control system, <0if an
€rror occurs.

Example:
(Refer to "File Functions Overview"on page 116)
while(1)
{
it (WaitForNewDisk() < 0)
break;
// perform operations on the new disk. Read a file, etc.

}

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

184 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Writelnteger

Name:
Writel nteger

Syntax:

SIGNED_INTEGER Writelnteger (INTEGER file_handle,
INTEGER 1)

Description:

Writes an integer from afile starting at the current file position. Two bytes are
written, most significant bytefirst. Refer to the section entitled “ Reading and Writing
Datato aFile’ on page 118 for adiscussion of when to use this function and when to
use the related functions: FileWrite, Writel nteger, WriteString, WriteStructure,
WriteSignedinteger, WriteL onglnteger, Writel ongSignedi nteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadInteger to read this.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).

| isthe integer whose value is written.

Return Value:

Number of byteswritten to thefile. If the return valueis negative, it isan error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 185

Software

Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
INTEGER 1i;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{
iErrorCode = Writelnteger(nFileHandle, i);
if (iErrorCode > 0)
PRINT (“Written to file correctly.\n”);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

186 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

WritelntegerArray

Name:
WritelntegerArray

Syntax:

SIGNED_INTEGER WritelntegerArray(INTEGER file_handle,
INTEGER iArray[m][n])

Description:

Writesthe array from afile starting at the current file position. Two bytesarewritten,
most significant first containing the row dimension of the array, then two more bytes
are written, containing the column dimension of the array. Then each integer is
written as a two byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. al the elements of row O first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
written, because thereisarow 0 and a column 0. Refer to the section entitled
“Reading and Writing Datato aFile” on page 118 for adiscussion of whento usethis
function and when to use the related functions: FileWrite, Writelnteger, WriteString,
WriteStructure, WriteSignedinteger, Writel onglnteger, Writel ongSignedinteger,
WritelntegerArray, WriteSignedintegerArray, WriteL onglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadL onglntegerArray to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).
IARRAY isthe array whose values are written.

Return Value:
Number of byteswritten to thefile. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 187

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
INTEGER iArray[10];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{

iErrorCode = WritelntegerArray(nFileHandle, iArray);
if (iErrorCode > 0)

PRINT (“Array written to file correctly.\n");
else

PRINT (“Error code %d\n”, iErrorCode);
ks
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

188 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

WriteLonglinteger

Name:
Writelongl nteger

Syntax:

SIGNED_INTEGER WriteLonglnteger (INTEGER file_handle,
LONG_INTEGER i)

Description:

Writes along integer from afile starting at the current file position. Four bytes are
written, most significant bytefirst. Refer to the section entitled “ Reading and Writing
Datato aFile’ on page 118 for adiscussion of when to use this function and when to
use the related functions: FileWrite, Writel nteger, WriteString, WriteStructure,
WriteSignedInteger, Writel onglnteger, Writel ongSignedi nteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadL onglnteger to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

LI isthelong integer whose value is written.

Return Value:

Number of byteswritten to thefile. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 189

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

LONG_INTEGER Ii;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{

iErrorCode = WriteLonglInteger(nFileHandle, 1i);
if (iErrorCode > 0)

PRINT (“Written to file correctly.\n”);
else

PRINT (“Error code %d\n”, iErrorCode);
ks
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

190 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

WriteSignedinteger

Name:
WriteSigned| nteger

Syntax:

SIGNED_INTEGER WriteSignedInteger (INTEGER
file_handle,

SIGNED_INTEGER si)

Description:

Writes asigned integer from afile starting at the current file position. Two bytes are
written, most significant first. Refer to the section entitled “ Reading and Writing Data
toaFile’ on page 118 for a discussion of when to use this function and when to use
the related functions: FileWrite, Writelnteger, WriteString, WriteStructure,
WriteSignedInteger, Writel onglnteger, Writel ongSignedi nteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadSignedinteger to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

Sl isthe signed integer whose value is written.

Return Value:

Number of byteswritten to thefile. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 191

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
SIGNED_INTEGER si;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{
iErrorCode = WriteSignedInteger(nFileHandle, si);
if (iErrorCode > 0)
PRINT (“Written to file correctly\n”);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

192 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

WriteSignedintegerArray

Name:
WriteSignedIntegerArray

Syntax:

SIGNED_INTEGER WriteSignedlntegerArray (INTEGER
file_handle,

SIGNED_INTEGER isArray[m][n])

Description:

Writesthe array from afile starting at the current file position. Two bytesarewritten,
most significant first containing the row dimension of the array, then two more bytes
are Write, containing the column dimension of the array. Then each signed integer is
written as a two byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. al the elements of row O first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
written, because thereisarow 0 and a column 0. Refer to the section entitled
“Reading and Writing Datato aFile” on page 118 for adiscussion of whento usethis
function and when to use the related functions: FileWrite, Writelnteger, WriteString,
WriteStructure, WriteSignedinteger, Writel onglnteger, Writel ongSignedinteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadSignedintegerArray to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).
ISARRAY isthe array whose values are Write.

Return Value:
Number of byteswritten to thefile. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 193

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
SIGNED_INTEGER isArray[10][5]1;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{
iErrorCode = WriteSignedlntegerArray(nFileHandle, isArray);
if (iErrorCode > 0)
PRINT (“Array written to file correctly.\n");
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

194 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

WriteSignedLonglinteger

Name:
WriteSignedL onglnteger

Syntax:
SIGNED_INTEGER WriteSignedLonglnteger (INTEGER
file_handle,
SIGNED_LONG_INTEGER sli)

Description:

Writes data from afile starting at the current file position. Each element of the
structure is written, without any padding bytes, that might actually be therein
memory. Refer to the section entitled “ Reading and Writing Datato a File” on page
118 for adiscussion of when to use this function and when to use the related
functions: FileWrite, Writel nteger, WriteString, WriteStructure,
WriteSignedInteger, WriteL onglnteger, Writel ongSignedi nteger,
WritelntegerArray, WriteSignedintegerArray, WriteL onglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

Use ReadSignedL onglnteger to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SLI isthe signed long integer whose value is written.

Return Value:

Number of byteswritten to thefile. If the return valueis negative, it isan error code.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER nFileHandle, iErrorCode;
SIGNED_LONG_INTEGER sli;
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O WRONLY);
IF (nFileHandle >= 0)
{
iErrorCode = WriteSignedLonglnteger(nFileHandle, sli);
if (iErrorCode > 0)
PRINT (“Written to file correctly.\n”);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Language Reference Guide - DOC. 5797G SIMPL+® @ 195

Software Crestron SIMPL+®

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only

196 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

WriteSignedLonglIntegerArray

Name:
WriteSignedL onglntegerArray

Syntax:

SIGNED_INTEGER WriteSignedLonglntegerArray (INTEGER
file_handle,

SIGNED_LONG_INTEGER sliArray[m][n])

Description:

Writesthe array from afile starting at the current file position. Two bytesarewritten,
most significant first containing the row dimension of the array, then two more bytes
are written, containing the column dimension of the array. Then each signed long
integer iswritten as afour byte quantity, most significant byte first. The integers are
stored in row-magjor order, e.g. al the elements of row O first, then the elements of
row 1, etc. Note that thereis one more row and one more column than the dimensions
that are written, because thereisarow 0 and acolumn 0. Refer to the section entitled
“Reading and Writing Datato aFile” on page 118 for adiscussion of whento usethis
function and when to use the related functions: FileWrite, Writelnteger, WriteString,
WriteStructure, WriteSignedinteger, Writel ongl nteger, Writel ongSignedinteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,

Writel ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadSignedL onglntegerArray to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).
SLIARRAY isthe array whose values are written.

Return Value:
Number of byteswritten to thefile. If the return valueis negative, it is an error code.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 197

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_LONG_INTEGER sliArray[10][5]1;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)

{

iErrorCode = WriteSignedLonglntegerArray(nFileHandle,
sliArray);

if (iErrorCode > 0)

PRINT (“Array written to file correctly.\n”);
else

PRINT (“Error code %d\n””, iErrorCode);

¥
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

198 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

WriteString

Name:
WriteString

Syntax:

SIGNED_INTEGER WriteString (INTEGER file_handle, STRING
s)

Description:

Writes a string to afile starting at the current file position. Internally, the string is
stored as a 2-byte length, most significant byte first, then the actual string bytes. In
the case of a string variable, the total number of bytes written isthe calculated from
the size of the string, not the string allocation size. Refer to the section entitled
“Reading and Writing Datato aFile” on page 118 for adiscussion of when to usethis
function and when to use the related functions: FileWrite, Writelnteger, WriteString,
WriteStructure, WriteSignedinteger, Writel ongl nteger, Writel ongSignedinteger,
Writel ntegerArray, WriteSignedintegerArray, WriteL onglntegerArray,

WriteL ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadString to read this.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

Sisthe string whose value is written.

Return Value:

Number of byteswritten to thefile. If the return valueis negative, it isan error code.

Language Reference Guide - DOC. 5797G SIMPL+® @ 199

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
STRING s[100];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{
iErrorCode = WriteString(nFileHandle, s);
if (iErrorCode > 0)
PRINT (“String written to file correctly.\n”);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

200 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

WriteStringArray

Name:
WriteStringArray

Syntax:

SIGNED_INTEGER WriteStringArray (INTEGER file_handle,
STRING s[])

Description:

Writesastring array to afile starting at the current file position. Internally, the string
isstored with thefirst 2 bytesindicating the total number of stringswritten, then each
string follows as a 2-byte length, most significant byte first, then the actual string
bytes. Inthe case of astring variable, the total number of bytesis calculated from the
size of the string, not the string all ocation size. Refer to the section entitled “ Reading
and Writing Datato aFile” on page 118 for a discussion of when to use thisfunction
and when to use the related functions: FileWrite, Writel nteger, WriteString,
WriteStructure, WriteSignedinteger, WriteL ongl nteger, WritelongSignedinteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,

WriteL ongSignedintegerArray, WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadStringArray to read this.

Parameters:

FILE_HANDLE specifiesthe file handle of the previously opened file (from
FileOpen).
Sisthe string whose value is written.

Return Value:
Number of byteswritten to thefile. If the return valueis negative, it isan error code.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 201

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;
STRING s[100][100];
StartFileOperations();
nFileHandle = FileOpen (“MyFile”, _O_WRONLY);
IF (nFileHandle >= 0)
{
iErrorCode = WriteStringArray(nFileHandle, s);
if (iErrorCode > 0)
PRINT (“String written to file correctly.\n”);
else
PRINT (“Error code %d\n”, iErrorCode);

}
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

202 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

WriteStructure

Name:
WriteStructure

Syntax:

WriteStructure (INTEGER nFileHandle, STRUCTURE struct
[, INTEGER nTotalBytesWritten])

Description:

Writes datato afile starting at the current file position. Each element of the structure
iswritten, without any padding bytes, that might actually be there in memory. Refer
to the section entitled “ Reading and Writing Datato a File” on page 118 for a
discussion of when to use this function and when to use the related functions:
FileWrite, Writelnteger, WriteString, WriteStructure, WriteSignedInteger,

Writel onglnteger, WriteL ongSignedinteger, WritelntegerArray,
WriteSignedintegerArray, WriteL onglntegerArray, Writel ongSignedintegerArray,
WriteStringArray.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.

Use ReadStructure to read this.

Parameters:
nFileHandle - File handle of the previously opened file (from FileOpen).
struct - Structure variable whose datawill be written to the file.

nTotal BytesWritten - optional argument. INTEGER variable that will contain the
total number of byteswritten to the file from the structure.

Return Value:

None.

Language Reference Guide - DOC. 5797G SIMPL+® @ 203

Software Crestron SIMPL+®

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, nTotalBytesWritten;
STRUCTURE PhoneBookEntry
{
STRING Name[50];
STRING Address[100];
STRING PhoneNumber[20];
}:
PhoneBookEntry OneEntry;
StartFileOperations();
nFileHandle = FileOpen (“MyFile.txt”, _O _WRONLY);
it (nFileHandle >= 0)
{

WriteStructure(nFileHandle, PhoneBookEntry,
nTotalBytesWritten);

if(nTotalBytesWritten < 0)

PRINT (“Error writing structure. Error code = %d\n”,
nTotalBytesWritten);

else

PRINT (“Structure written to file correctly. Total
bytes written = %d\n”, nTotalBytesWritten);

¥
EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only

204 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Mathematical Functions

Mathematical Functions Overview

These functions perform general mathematical operationsin agiven SIMPL +
program by operating on one or more numerical arguments and returning an
INTEGER as aresullt.

Abs

Name:
Abs

Syntax:
INTEGER Abs(INTEGER SOURCE);
INTEGER Abs(SIGNED_INTEGER or SOURCE);

Description:

Takes the absolute value of SOURCE. If SOURCE is negative, a positive valueis
returned. If SOURCE is aready positive, the same valueis returned.

Parameters:
Takes the absolute value of an INTEGER.

Return Value:
An INTEGER corresponding to the absolute value of SOURCE.

Example:

DIGITAL_INPUT TRIG;
INTEGER 1, K;
1=-5;

CHANGE TRIG

{
K=ABS(1);
PRINT(*“Original Value = %d, Absolute Value = %d\n”, 1, K);

}
The output would be:

Original Value = -5, Absolute Value = 5

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 205

Software Crestron SIMPL+®

Max

Name:

Max

Syntax:
INTEGER Max(INTEGER VAL1, INTEGER VAL2)

Description:

Determine the maximum of two values based on an unsigned comparison.

Parameters:
VAL1 and VAL2 are both INTEGER values on which the test is performed.

Return Value:

The maximum of Vall, Val2 after an unsigned comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” on page 21 for a further explanation of how the
values are compared.

Example:

INTEGER X, Y;

FUNCTION MAINQ)

{
X = MAX(65535, 0);
Y = MAX(25, 26);
ks
X would be 65535, and Y would be 26.
Version:
SIMPL+ Version 1.00

206 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

MIN

Name:
Min

Syntax:

INTEGER Min(INTEGER VAL1, INTEGER VAL2)

Description:
Determine the minimum of two values based on an unsigned comparison.

Parameters:
VAL1 and VAL?2 are both INTEGER values on which the test is performed.

Return Value:

The minimum of Vall, Va2 after an unsigned comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” for afurther explanation of how the values are
compared.

Example:
INTEGER X, Y;

FUNCTION MAINQ)

{

X = MIN(65535, 0);

Y = MIN(25, 26);

ks
X would be 0, and Y would be 25.
Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 207

Software Crestron SIMPL+®

MulDiv

Name:
MulDiv

Syntax:
INTEGER MulDiv(INTEGER VAL1, INTEGER VAL2, INTEGER VAL3)

Description:
Computestheresult (VAL1* VAL2)/VALS.

Parameters:
VALL, VAL2, and VAL3 are INTEGER values.

Return Value:

A 16-hit integer is returned based on the above equation. The arithmetic operations
are performed using unsigned arithmetic. Note that 32-bit math isused internally, so
that if VAL1*VALZ2 is greater than a 16-bit number, accuracy is maintained. If the
final result is greater than 16-bits, the lower 16-bits are returned.

Example:

INTEGER X, Y;

FUNCTION MAINQ)

{
X = 1970;
Y = 40;

PRINT(“The result of (%d * %d)/25 = %d\n”, X, Y,
MULDIV(X, Y, 25);
¥

The PRINT statement would show the result as being 3152. In this case, X*Y is
greater than a 16-bit number, but accuracy is maintained due to the use of 32-hit
arithmetic internally.

Version:
SIMPL+ Version 1.00

208 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

SMAX

Name:
SMax

Syntax:
INTEGER SMax(INTEGER VAL1, INTEGER VAL2)

Description:
Determine the maximum of two values based on a signed comparison.

Parameters:
VAL1 and VAL?2 are both INTEGER values on which the test is performed.

Return Value:

The maximum of Vall, Val2 after asigned comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” for afurther explanation of how the values are

compared.
Example:

INTEGER X, Y;
FUNCTION MAINQ)

{
X = SMAX(65535, 0);
Y = SMAX(25, 26);
}
X would be 0 (65535 interpreted as-1), and Y would be 26.
Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 209

Software Crestron SIMPL+®

SMin

Name:
SMin

Syntax:

INTEGER SMin(INTEGER VAL1, INTEGER VAL2)

Description:

Determine the minimum of two values based on a signed comparison.

Parameters:
VAL1 and VAL2 are both INTEGER values on which the test is performed.

Return Value:

The minimum of Vall, Va2 after asigned comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” on page 21 for a further explanation of how the
values are compared.

Example:

INTEGER X, Y;

FUNCTION MAINQ)

{
X = SMIN(65535, 0);
Y = SMIN(25, 26);
}
X would be 65535 (interpreted as -1), and Y would be 25.
Version:
SIMPL+ Version 1.00

210 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Random Number Functions

Random Number Functions Overview

These functions allow a SIMPL + program to generate a random number.

Random

Name:

Random

Syntax:
INTEGER Random(INTEGER LowerBound, INTEGER UpperBound);

Description:
Generate arandom number. Refer to “ Seed” on page 213 and “Rnd” on page 212.

Parameters:
LowerBound is an INTEGER specifying the lower end of the range.
UpperBound is an INTEGER specifying the upper end of the range.
Both LowerBound and UpperBound are treated as unsigned values.

Return Value:

Returns an unsigned number from LowerBound to UpperBound. Both L owerBound
and UpperBound are legal values.

Example:

INTEGER NUM;

FUNCTION MAINQ)

{
NUM = RANDOM(25, 80);
PRINT(*“The random number between 25 and 80 is: %d\n”, NUM);
3
An example output from this would be:
The random number between 25 and 80 is: 42

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 211

Software Crestron SIMPL+®

Rnd

Name:
Rnd

Syntax:
INTEGER Rnd();

Description:

Generate arandom number. Refer to “ Seed” on page 213 and “Random” on
page 211.

Parameters:

None.

Return Value:
An INTEGER from 0 to 65535.

Example:

INTEGER NUM;

FUNCTION MAINQ)

{
NUM = RNDQ);
PRINT(“The random number is: %d\n”, NUM);

}

Version:
SIMPL+ Version 1.00

212 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Seed

Name:
Seed

Syntax:
Seed(INTEGER SeedValue);

Description:

Provides a seed or origin for the random number generator so that the numbers
returned by RND and RANDOM are pseudo-random numbers. SEED isnot required
for generating random numbers as the random number generator will be seed with a
default value.

Thisdefault value isissued at control system restart, not program restart. That is, if
you don't used the SEED call, you will not get the same value if you restart the
program. For any particular value of SEED, the random number generator will
generate apredictabl e series of numbers. Note that specifying the seed valueisglobal
toall SIMPL+ programs running inside a control system. The sequence beginsagain
whenever SEED iscalled.

Parameters:

None.

Return Value:

None.

Example:
INTEGER NUM;

FUNCTION MAINQ)

{

SEED(25);

NUM = RANDOM(25, 80);

PRINT(*“The random number between 25 and 80 is: %d\n”, NUM);

}

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 213

Software

Crestron SIMPL+®

String Formatting & Printing Functions

String Formatting & Printing Functions Overview

The printing functions are used to take INTEGER and STRING type argumentsin a
SIMPL + program, format them in auser specified way, and send the output to either
the COMPUTER port of the control system or to another STRING.

MakeString

Name:
MakeString

Syntax:

MakeString(STRING DESTINATION, <Static Specification
String> [, <argl> ...]);
MakeString(0 | 1 | 2, <Static Specification String> [,

<argl> ...1);

Description:

MAKESTRING isavariant of PRINT (Refer to page 216). The output of
MAKESTRING goesto the DESTINATION string. It can print simpletext stringsor
complex formatted strings. The second form of MAKESTRING allows different

destinations to be selected:

0: Console Port, same as PRINT.

1: CPU (same functionality as SendPacketToCPU function)

2: Cresnet Network (same functionality as SendCresnetPacket function).

NOTE: Inthe second form, the first argument may not be avariable containing 0, 1,
2. It must bethewritten as0, 1, 2. Crestron is discouraging the use of the second form
of MAKESTRING in favor of either the PRINT command or aternate methods for

activating devicesthat do not require knowledge of Cresnet packets, which are subject

to change.

Parameters:

DESTINATION is a string where the output goes to after it has been formatted and
processed. For afurther description of formatting, refer to PRINT that beginson page

216.

Return Value:

None.

214 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:

INTEGER X;
STRING Z[100], OUT[100];

X=10;
Z="Hello”;

FUNCTION MAINQ)

{
// Puts “This is a string” followed by a CRLF onto OUT.

MAKESTRING(OUT, “This is string\n);

// Puts “The value of X is 10 in decimal, OA in hex”

// followed by CRLF onto OUT.

MAKESTRING(OUT, “The value of X is %u in decimal, %02X in
hex\n”, X, X);

// Puts “The String value is Hello” onto OUT.
MAKESTRING(OUT, “The String value is %s”, Z);

}

Version:
SIMPL+ Version 2.00 for Console, Cresnet, and CPU destinations.
SIMPL+ Version 1.00 for everything else.

Language Reference Guide - DOC. 5797G SIMPL+® @ 215

Software Crestron SIMPL+®

Print

Name:
Print

Syntax:

PRINT(<Static Specification String> [, <argl> ...]);

Description:

The output of PRINT goes to the CONSOLE port of the control system and can be
monitored in the Crestron Viewport. It can print simple text strings or complex
formatted strings.

Parameters:

<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form:

%[[Pad]Width]specifier

Valid Format Specifiers

S Specifies a BUFFER_INPUT, STRING, or STRING_INPUT variable.
(unprintable characters are printed in the format that Viewport uses)

d Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as a signed decimal value.

u Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as an unsigned decimal value.

X Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as a lowercase hexadecimal number.

X Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as an uppercase hexadecimal number.

I Specifies a long_integer or unsigned_long_integer will follow
% Prints a % sign (i.e. use %% to print a % sign).
%ID | Specifies a LONG_INTEGER to be printed as a signed decimal value.

%¢c | Specifies a printable ASCII character to be printed.

The optional Width specifier is a number that states the width of thefield as
characters. If the value to be printed is less than the Width, it is padded on the left
with spaces. Width can be two digits.

The optional Pad specifier works with the Width specifier. If the result of the Width
operation resultsin the need to add spaces, the Pad specifier can be used to pad with
different valuesrather than aspace. '0'istheonly valid pad value, i.e. %03d padswith
leading zeros so 1Z would be printed as 012.

As each % vaue isfound, it pulls the matching <arg> off thelist. The first % uses
<argl>, the second % uses <arg2>, etc. If the number of % specifiers does not match
the number of arguments, the program will generate a compile error, the compiler

216 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

1

also checks to make sure the format specifier matches the type of the variable being
used (i.e. if %d is used, the variable being used should be INTEGER type).

NOTE: If no format specifiers are used, then a simple quoted text string is printed.

In the <Static Specification String>, certain values may be printed using “escape
sequences’. Escape sequences start with the \ character and have a variable number
of characters following. The following table specifies the legal escape sequences:

ESCAPE | MEANING HEX CONSTANT
\n Carriage Return + Linefeed \xOD\0A
\t Tab \x09
\b Backspace \x08
\r Carriage Return \xOD
\f Form Feed \x0C
\a Audible Alert (Bell) \x07
\\ Backslash \x5C
\' Single Quote \x27
\’ Double Quote \x22

\xZzZ Hex Constant. Z can range from 0-9, a-f or A-F \xZzZ

Return Value:

None.

Example:

INTEGER X;

STRING Z[100];

X=10;

Z="Hello”’;

FUNCTION MAINQO

{

// Outputs “This is a string” followed by a CRLF.
PRINT(“This is a string\n”);

// Outputs “The value of X is 10 in decimal, OA in hex”
// followed by CRLF.

PRINT(“The value of X is %u in decimal, %02X in hex\n”,
X, X)3

// Outputs “The String value is Hello”

PRINT(“The String value is %s”, Z);
}

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 217

Software

Crestron SIMPL+®

String Concatenation

String concatenation can be performed either using the + operator or by using
MAKESTRING or PRINT functions. It is easier to use the + operator in general
usage, a though the formatting options of the MAKESTRING and PRINT functions
give greater flexibility.

The + operator for strings is used the same way as in mathematical expressions.
String concatenation may only be used as a standalone statement. The syntax is:
<Destination_string> = <Stringl > [+ <String2> ...];

When string values appear on the right-side of the equal sign, the exact contents are
appended to the new string. <String> values may be of type literal (quoted) strings,
BUFFER_INPUT, STRING, STRING_INPUT, or any function that returns a string.

Examples:
STRING A$[100], B$[100], C$[100];

B$=""Hello”’;
C$="World!”’;
1=56;

J=2;

// This will output “Hello562World!”
AS=B$+ITOA(D+ITOA(I)+’xyz"+C$;
PRINT(“%s”, A$);

// This will output “VHello2World”
A$=CHR(1)+B$+I1TOA(J)+C$;
PRINT(“%s™, A$);

218 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

String Parsing & Manipulation Functions

String Parsing and Manipulation Functions Overview
String parsing and manipulation functions are used where the contents of string
variables need to be examined or modified.

ClearBuffer

Name:
ClearBuffer

Syntax:
ClearBuffer(STRING BUFFERNAME);

Description:

Deletes the contents of the specified buffer. If aLEN is done on the buffer after a
CLEARBUFFER, thereturn valuewill be 0. Thisisequilavent to assigning an empty
string to the buffer, e.g., BUFFERNAME="""";

Parameters:

BUFFERNAME specifies the name of the string to empty. BUFFER_INPUT,
STRING, and STRING_INPUT sources are legal.

Return Value:

None.

Example:

BUFFER_INPUT IN$[100];

CHANGE IN$

{

IF(RIGHT$(IN$,1) = “Z7)
CLEARBUFFER(INS) ;

// Code to process IN$ goes here.
}

Inthisexample, if the last character that comesinto the BUFFER_INPUT is“Z”, the
buffer is cleared.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 219

Software Crestron SIMPL+®

Find

Name:
Find

Syntax:

INTEGER Find(STRING MATCH_STRING, STRING SOURCE_STRING
[, INTEGER START POSITION]);

Description:
Finds the position in SOURCE_STRING where MATCH_STRING first occurs.

Parameters:
MATCH_STRING isa STRING containing the data to be searched.
SOURCE_STRING isa STRING containing the data to be searched.

START_POSITION isan INTEGER which tellsFIND at what character in the string
to start the search, and is 1 based. If not specified, it defaultsto 1.

Return Value:

The index of where MATCH_STRING first occurs (going left to right) in
SOURCE_STRING. If amatch can not be found, or POSITION exceeds the length
of the SOURCE_STRING then O isreturned. The index is 1 based.

Example:

STRING_INPUT IN$[100];

INTEGER START_LOC;

CHANGE IN$

{

START_LOC = FIND(*“XYZ”, IN$);

PRINT(*“XYZ was found starting at position %d in %s\n”,
START_LOC, IN$);

}

If IN$ was set equal to “Hello, World!” then START _LOC would be 0 since“XYZ”
can not be found. If IN$ was equal to “CPE1704XYZXYZ", then START_LOC
would be equal to 8.

Version:
SIMPL+ Version 1.00

220 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Gather

Name:
Gather

Syntax:
STRING Gather(STRING DELIMITER, STRING SOURCESTRING);

Description:

Concatenatesthe datafrom SOURCESTRING and issuesit on the return string when
the specified delimiter has been reached. Note that when GATHER is executed, if
SOURCESTRING does not include the DELIMITER, then the equivalent of a
PROCESSL OGIC is performed. When the system returns to the GATHER, it will
once again check for the proper delimiter. In effect, section of code (a CHANGE
statement, for example) is held up at the GATHER until the proper datais received.

Parameters:
The gather function searches the SOURCESTRING for the DELIMITER string.

NOTE: It makes sense only to use GATHER with STRING_INPUT or
BUFFER_INPUT types.

Return Value:
The concatenated string which includes the delimiter specified. Example:

BUFFER_INPUT COM$[100];
DIGITAL_INPUT trig;
STRING IN$[100];

PUSH trig

{

IN$ = GATHER(*\n”, COM$);

PRINT(“The value of IN$ is %s\n”, IN$);

}

In this example, the event is started when TRIG goes high. When data comesinto
COM$, the GATHER statement is evaluated. The PRINT statement is never reached
until the delimiter \n (CRLF) is found. When the delimiter is found, then the string
will be printed. Note that the GATHERed string will have the\n on it.

Language Reference Guide - DOC. 5797G SIMPL+® @ 221

Software Crestron SIMPL+®

Example:

BUFFER_INPUT COM$[100];
DIGITAL_INPUT trig;
STRING IN$[100];

CHANGE COM$

{

IN$ = GATHER(*\n”’, COM$);

PRINT(“The value of IN$ is %s\n”, IN$);

}

In the 2-Series Control System processors, a GATHER that is waiting for data will
use up the next change of the BUFFER_INPUT until the terminating character is
encountered. That is, any CHANGE event handler for the BUFFER_INPUT will not
be called.

If, in the first event, COM$ contains the string “Hello”, the event will wait in the
GATHER. When the COM$ changes again to contain “World!\n”, the event will
immediately resume after the GATHER. The CHANGE COM$ event will only be
called oncein this case. In the X-Generation Control Systems, the CHANGE event
would be called both times.

Version:
SIMPL+ Version 2.00

222 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GetC

Name:
GetC

Syntax:
INTEGER GetC(BUFFER_INPUT SOURCE);

Description:

Returnsthe value at position 1 of SOURCE string and shiftsthe rest of the buffer up
by one. In thisway, values may be picked out of abuffer for processing.

Parameters:

SOURCE istypicaly from a BUFFER_INPUT statement. It may be defined as a
STRING or STRING_INPUT, but since GETC removes characters from SOURCE,
the result is destructive to the source string.

Return Value:
An INTEGER containing a single character from position 1 of the buffer.

If there are no charactersin the buffer for GETC to retrieve, then the value of 65535
is returned.

Example:
In this example, a buffer input is read until the character “A” isretrieved.

BUFFER_INPUT IN$[100];
INTEGER INCHAR;

CHANGE IN$

{
INCHAR = 0;

WHILE(INCHAR <> "A")
INCHAR = GETC(INS);

// continue processing.

}

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 223

Software

Crestron SIMPL+®

Left

Name:
Left

Syntax:
STRING Left(STRING SOURCE, INTEGER NUM);

Description:
Takestheleftmost NUM characters of SOURCE and returnsthem in an output string.

Parameters:
SOURCE isa STRING containing the source string.

NUM isan INTEGER that tells LEFT how many charactersto usein the
computation.

Return Value:

A string representing the leftmost NUM characters of SOURCE. If NUM is greater
than the number of charactersin SOURCE, then the return isidentical to SOURCE.

Example:

STRING_INPUT Var$[100];
STRING Temp$[100];

CHANGE Var$

{
Temp$ = LEFT(vVar$, 5);
PRINT(“Left most 5 characters of %s are %s\n”, Var$, Temp$);

}
Inthisexample, if Var$is"“abcdefghijk”, Temp$ will contain “abcde”.

Version:
SIMPL+ Version 1.00

224 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Len

Name:

Len

Syntax:
INTEGER Len(STRING SOURCE);

Description:

Returns the length of the actual string, not the declared maximum length.

Parameters:
SOURCE is a string whose length is to be determined.

Return Value:

A valuefrom 0 - 65535, which givesthe number of charactersin the string. An empty
string returns alength of 0.

Example:

STRING_INPUT INS$[100];
INTEGER Temp;

CHANGE IN$

{

Temp = LEN(INS$);

PRINT(“The Length of %s is %d\n”, IN$, Temp);

}
Inthisexample, if IN$isequal to“Thisisatest” then Temp will contain the integer
14.
Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 225

Software

Crestron SIMPL+®

Lower

Name:

Lower

Syntax:
STRING Lower(STRING SOURCE);

Description:

Takes a source string and converts characters with the values a-z (lowercase) to A-Z
(uppercase).

Parameters:

SOURCE isastring to be converted to lowercase. SOURCE is not modified, unless
it isalso used asthereturn value, e.g., S$=LOWER(SS) ;

Return Value:

A STRING containing the lowercase version of SOURCE. Charactersthat do not fall
into the range A-Z are not modified and will stay as specified.

Example:

STRING_INPUT IN$[100];
STRING LOWER$[100];

CHANGE IN$

{

LOWERS = LOWER(INS);

PRINT(“Lowercase version of %s is %s\n”,IN$, LOWERS);
b

In this example, if IN$ contains“ThisisaTest 123!”, then LOWER$ will contain
“thisisatest 123!".

Version:

SIMPL+ Version 1.00

226 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Mid

Name:
Mid

Syntax:
STRING Mid(STRING SOURCE, INTEGER START, INTEGER NUM);

Description:
Returns a string NUM characters long from SOURCE, starting at position START.

Parameters:
SOURCE isa STRING containing the input string.

START isan INTEGER telling MID at which character positionin SOURCE to start.
Thefirst character of SOURCE is considered 1.

NUM isan INTEGER telling MID how many characters to use from SOURCE.

Return Value:
A string NUM characters long starting at START.
If START is greater than the length of SOURCE, an empty STRING is returned.

If NUM is greater than the total number of characters that can be retrieved starting
from START, only the remaining charactersin SOURCE will be pulled. For
example, MID(*ABCD”, 2, 10) would return a STRING containing BCD.

Example:

STRING_INPUT Var$[100];
STRING Temp$[100];

CHANGE Var$

{
Temp$ = MID(Var$, 2, 5);

PRINT(“String starting at position 2 for 5 characters is
%s\n”’, Temp$) ;

}

In this example, if Var$ contains “ abcdefghijklmnop”, then Temp$ will contain
“bedef”.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 227

Software Crestron SIMPL+®

Remove

Name:

Remove

Syntax:

STRING Remove(STRING DELIMITER, STRING SOURCESTRING
[. INTEGER POSITION]);

Description:

Begins searching a string <source> for the <delimiter> at the specified position, then
removes all charactersfrom the beginning of the string <source> up to and including
the delimiter. Returns a string containing all of the removed characters.

Parameters:
DELIMITER isastring containing the string to match for.
Search within the string, SOURCESTRING is the string to search within.

POSITION isan optional integer which specifies how many charactersinto
SOURCESTRING to start. It defaultsto 1, which isthe first character of
SOURCESTRING.

Return Value:

If the specified DELIMITER is found, the contents of the source string, up to and
including the delimiter are returned. The original source string is modified.

Example:

BUFFER_INPUT SOURCE$[50];

STRING OUTPUT$[50];

CHANGE SOURCE$

{

OUTPUT$ = REMOVE(*“abc”, SOURCE$);

}
Inthisexample, if SOURCE$ were*“testabc123”, then OUTPUT$ would be*“testabc”
and SOURCES$ would contain “123".

BUFFER_INPUT SOURCE$[50];

STRING OUTPUT$[50]:

CHANGE SOURCE$

{

OUTPUT$ = REMOVE(“abc”, SOURCE$, 6);

}

If SOURCES$ were “testabcabc123”, then OUTPUT$ would be “testabcabe” and
SOURCES$ would contain “123”.

Version:
SIMPL+ Version 2.00

228 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

REVERSEFIND

Name:

ReverseFind

Syntax:

INTEGER ReverseFind(STRING MATCH_STRING, STRING
SOURCE_STRING

[. INTEGER START POSITION]);

Description:
Finds the position in SOURCE_STRING where MATCH_STRING last occurs.

Parameters:
MATCH_STRING is a STRING containing the searched for data.
SOURCE_STRING isa STRING containing the data to be searched.

START_POSITION isan INTEGER which tells REVERSEFIND at what character
in the string to start the search, and is 1 based. If it is not specified, it defaults to the
end of the string.

Return Value:

The index of where MATCH_STRING last occurs (going right to left) in
SOURCE_STRING. If the data can not be found, or POSITION exceeds the length
of the SOURCE_STRING then O isreturned. The index is 1 based.

Example:

STRING_INPUT IN$[100];
INTEGER START_LOC;

CHANGE IN$
{
START_LOC = REVERSEFIND(*“XYZ”,IN$);

PRINT(“last XYZ occurance was found at position %d in %s\n”,
START_LOC, IN$) ;

}

If IN$ was set equal to “Hello, World!” then START_LOC would be 0 since“ XY Z”
can not be found. If IN$ was equal to “CPE1704XYZXYZ", then START_LOC
would be equal to 11.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 229

Software

Crestron SIMPL+®

Right

Name:
Right

Syntax:
STRING Right(STRING SOURCE, INTEGER NUM);

Description:

Takes the rightmost NUM characters of SOURCE and returns them in an output
string.

Parameters:
SOURCE isa STRING containing the source string.

NUM isan INTEGER that tells RIGHT how many characters to use in the
computation.

Return Value:

A string representing the rightmost NUM characters of SOURCE. If NUM isgreater
than the number of charactersin SOURCE, then the return isidentical to SOURCE.

Example:

STRING_INPUT Var$[100]
STRING Temp$[100];

CHANGE Var$

{
Temp$ = RIGHT(Var$, 5);
PRINT(“Right most 5 characters of %s are %s\n”, Var$, Temp$);

}
In this example, if Var$ contains “ abcdefghijk”, then Temp$ contains “ghijk”.

Version:
SIMPL+ Version 1.00

230 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

1

SetString

Name:
SetString

Syntax:

INTEGER SetString(STRING SOURCE, INTEGER POSITION,
STRING DESTINATION);

Description:

Overwrites the bytesin DESTINATION with the bytesin SOURCE starting at
POSITION in the DESTINATION string.

Parameters:
DESTINATION isa STRING containing the string to be modified.

POSITION isan INTEGER referencing the starting byte to write at in
DESTINATION. 1isthefirst byte of the string.

SOURCE isa STRING containing the string to use in the operation.

Return Value:
The new length or an error code as defined below:

For the purposes of the explanation, a string has been declared STRING
DESTINATION[MAX_LEN]. The string has a current length defined by
LEN(DESTINATION).

e.g., If the specified position is beyond the declared length of the destination string:
If POSITION > MAX_LEN, no operation is performed and -8 is returned.

e.g., If the entire source string can't be inserted without exceeding the length of the
destination string:

If POSITION-1+LEN(SOURCE) > MAX_LEN, the operation is performed, the
string is truncated and -4 is returned.

e.g., If the position exceeds the current length of the destination:

If POSITION > LEN(DESTINATION), the string is padded with spaces and -2
is returned.

e.g., If the source string will make the destination string longer:

If POSITION-1+LEN(SOURCE) > LEN(DESTINATION), the string will be
expanded to fit and -1 will be returned.

NOTE: If more than one condition is met (typically -2 and -1 would be met at the
sametime), the codes are added together as the return value.

NOTE: The subroutine knows the max length of the destination string.

If the operation meets none of the above conditions, the new length is returned.

The return code may be ignored (as in the following example).

Language Reference Guide - DOC. 5797G SIMPL+® @ 231

Software Crestron SIMPL+®

Example:
STRING DESTINATION$[100];

DESTINATION$ = :\"Space XXXX To Fill”’;

SETSTRING(*“ABCD”, 7, DESTINATIONS);

Thiswould result in DESTINATION containing the string “ Space ABCD To Fill”.
If the return code were used, it would contain 18 (the string length).

Version:
SIMPL+ Version 1.00

232 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Upper

Name:
Upper

Syntax:
STRING Upper(STRING SOURCE);

Description:

Takes a source string and converts characters with the values a-z (lowercase) to A-Z
(uppercase).

Parameters:

SOURCE isastring to be converted to uppercase. SOURCE is not modified, unless
it isalso used as the return value, e.g., S$=UPPER(S$) ;

Return Value:

A STRING containing the uppercase version of SOURCE. Charactersthat do not fall
into the range a-z are not modified and will stay as specified.

Example:

STRING_INPUT IN$[100];
STRING UPPER$[100];

CHANGE IN$

{

UPPER$ = UPPER(INS);

PRINT(“Uppercase version of %s is %s\n”,IN$, UPPERS);
3

Inthisexample, if IN$ contains“Hello There 123!” then UPPERS contains“HELLO
THERE 123!".

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 233

Software

Crestron SIMPL+®

System Control

System Control Overview
These constructs control system behavior and may change the resultant flow of the
given SIMPL+ program.

Delay

Name:
Delay

Syntax:
Delay(INTEGER TIME);

Description:

Forces atask switch and starts atimer for the hundredths of a second specified by
TIME. The system continues with the statements after a delay when the delay time
has expired. Refer to “WAIT” on page 265.

Parameters:

TIME isthe number of hundredths of a second to delay. For example, 500 specifies
a5-second delay.

Return Value:

None.

Example:

// A delay of 525 hundredths of a second or 5.25 seconds
#define_constant MY_DELAY 525

DELAY(MY_DELAY);

Version:
SIMPL+ Version 1.00

234 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

ProcessLogic

Name:
ProcessLogic

Syntax:

ProcessLogic(Q);

Description:

Forces atask switch away from the current SIMPL+ module, so that the SIMPL
Windows program can process the outputs of the SIMPL+ module. Refer to the
discussion on Task Switching on page 25.

Parameters:

None.

Return Value:

None.

Example:

INTEGER X;
ANALOG_OUTPUT 1I;

FOR(X=0 TO 25)

{

1 = X;
PROCESSLOGICQ);
ks

In this example, the analog output | is updated every pass through the loop. Logic
dependent upon the analog value will refer to the new analog value every pass
through the loop.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 235

Software

Crestron SIMPL+®

Pulse

Name:
Pulse

Syntax:
Pulse(TIME, DIGITAL_OUTPUT OUT);

Description:

Pulses the output high then low for the specified length of time (in hundredths of a
second). When the pulse starts, atask switch is performed so other logic can be
processed. If the output isalready high, the SIMPL Windowslogic processor will not
see achange and no further actions will be triggered.

Parameters:

TIME is the number of hundredths of a second to pulse. For example, 500 specifies
a5-second delay.

OUT isaDIGITAL_OUTPUT that isto be pulsed.

Return Value:

None.

NOTE: (X-Genonly)Elementsof aDIGITAL_OUTPUT array cannot be used within
the Pulse function.

Example:

// A pulse of 525 hundredths of a second or 5.25 seconds
#define_constant MY_PULSE TIME 525

DIGITAL_OUTPUT OutputToPulse;

PULSE(MY_PULSE_TIME, OutputToPulse);

Thiswill executeimmediately and output apulse of 5.25 secondsto the digital output
OutputToPulse.

Version:
SIMPL+ Version 1.00

236 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

TerminateEvent

Name:

TerminateEvent

Syntax:

TerminateEvent;

Description:

Exitsa CHANGE, PUSH, or RELEASE event. It may also be used to exit aloop in
the main() function if desired. TERMINATEEVENT cannot be used inside of a
function.

Example:

INTEGER X;
ANALOG_INPUT Y;

CHANGE Y

{

X=0;
WHILE(X<25)

{

IF(Y = 69)
TerminateEvent;
X=X+ 1;
PRINT(“X=%d\n", X);
¥

3

In this example, the CHANGE event will terminate if the ANALOG_INPUT Y
equals the value of 69. Otherwise, the CHANGE will exit after the WHILE loop
finishes.

Version:

SIMPL+ Version 2.00 - Nolonger allowed inside functions, RETURN should
be used. Existing code that relies on the event terminating should be
revised.

SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 237

Software Crestron SIMPL+®

System Interfacing

System Interfacing Overview

These functions control the way the SIMPL + program communicates with Cresnet
network devices and the CPU.

GenerateUserNotice

Name:

GenerateUserNotice

Syntax:

GenerateUserNotice(<Static Specification String> [, <argl>

---Ds

Description:

Places a notification message into the control system's error log

Parameters:

<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form: %[[Pad] Width]specifier

Refer to “Print” on page 216 for alist and description of valid Format Specifiers.

Return Value:

None.

Example:
Function MyFunc(Q)

{
STRING sNotice;

sNotice = "Projector";

GenerateUserNotice("The %s bulb has a total of %d
hours', sNotice, 500);

}

Version:
SIMPL+ Version 3.01.07

Control System:
2-Series Only

238 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GenerateUserWarning

Name:

GenerateUserWarning

Syntax:

GenerateUserWarning(<Static Specification String> [, <argl>

---Ds

Description:

Places awarning message into the control system's error log

Parameters:

<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form: %[[Pad] Width]specifier

Refer to “Print” on page 216 for alist and description of valid Format Specifiers.

Return Value:

None.

Example:
Function MyFunc()

{
STRING sWarning;

sWarning = "Projector™;

GenerateUserWarning(""The %s bulb has a total of %d
hours™, sWarning, 800);

}

Version:
SIMPL+ Version 3.01.07

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 239

Software

Crestron SIMPL+®

GenerateUserError

Name:

GenerateUserError

Syntax:

GenerateUserError(<Static Specification String> [, <argl>

---Ds

Description:

Places an error message into the control system's error log

Parameters:

<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form: %[Pad] Width]specifier

Refer to “Print” on page 216 for alist and description of valid Format Specifiers.

Return Value:

None.

Example:
Function MyFunc()
{
STRING sError;
sError = "Projector";

GenerateUserError(""The %s bulb has exceeded %d hours™,
sError, 1000);

}

Version:

SIMPL+ Version 3.01.07

Control System:
2-Series Only

240 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

CheckForNVRAMDIsk

Name:
CheckForNVRAMDisk

Syntax:
INTEGER CheckForNVRAMDisk()

Description:
Tests whether or not an NVRam Disk is currently installed in the control system.

Parameters:

None.

Return Value:
Returns 1 if an NVRam Disk is currently installed in the control system.

Example:

(Refer to “File Functions Overview” on page 116)

IF (CheckForNVRAMDiIsk() = 1)
PRINT ("NVRAM Disk found");

Version:
SIMPL+ Version 3.01.07 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 241

Software Crestron SIMPL+®

Time & Date Functions

Time and Date Functions Overview

Timeand Datefunctionsin agiven SIMPL+ program are used to retrieveinformation
about the current date and time from the system clock. Values can be retrieved as
either text stringsi.e. “January” or asinteger values. Typicaly, integer values are
used if computations need to be performed (i.e. when the date is the 25th, perform a
specific action).

Date

Name:
Date

Syntax:
STRING Date(INTEGER FORMAT);

Description:
Returns a string corresponding to the current date with the specified FORMAT.

Parameters:

FORMAT isan integer describing the way to format the date for the return. Valid
formats are 1 through 4.

FORMAT 1 returnsastring in the form MM/DD/YYYY
FORMAT 2 returns a string in the form DD/MM/YYY'Y
FORMAT 3returnsastring in theform YYYY/MM/DD
FORMAT 4 returns a string in the form MM/DD/Y'Y

Informat 4, the year 2000 is shown as 00. Digits 58 - 99 aretreated as 1958-1999 and
00-57 are treated as 2000 through 2057.

Return Value:
A STRING corresponding to the current date.

Example:

STRING TheDate$[100];

FUNCTION MAINQ
{
TheDate$=DATE(1);
PRINT(“The date is %s\n”, TheDate$);
3
Thiswould print astring such as“ The date is 03/25/2002" .

Version:
SIMPL+ Version 1.00

242 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Day

Name:
Day

Syntax:
STRING Day();

Description:
Returns the day of the week asa STRING.

Parameters:

None.

Return Value:

The day of the week isreturned in astring. Valid returns are Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, or Saturday.

Example:

STRING TheDay$[100];

FUNCTION MAINQ)

{
TheDay$=DAY(Q);
PRINT(“The day of the week is %s\n”, TheDay$);

}
An example output of thiswould be “The day of the week is Monday”.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 243

Software Crestron SIMPL+®

GETDATENUM

Name:
GetDateNum

Syntax:
INTEGER GetDateNum();

Description:

Returns an integer corresponding to the current day of the month.

Parameters:

None.

Return Value:
The day of the month as an integer from 1 to 31.

Example:

INTEGER NumDateOfMonth;

FUNCTION MAINQ)

{
NumDateOfMonth = GetDateNum();

PRINT(“The current day of the month is %d\n””, NumDateOfMonth);

}
An example output of thiswould be “The current day of the month is 25”.

Version:
SIMPL+ Version 1.00

244 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GETDAYOFWEEKNUM

Name:
GetDayOfWeekNum

Syntax:
INTEGER GetDayOfWeekNum();

Description:
Returns an integer corresponding to the current day of the week.

Parameters:

None.

Return Value:

The day of the week as an integer from 0 to 6; O represents Sunday to 6 representing
Saturday.

Example:

INTEGER NumDayOfWeek;

FUNCTION MAINQ)

{
NumDayOfWeek = GetDayOfWeekNum();

PRINT(“The current day of the week is %d\n”, NumDayOfWeek);

}
An example output of thiswould be “The current day of the week is4”.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 245

Software Crestron SIMPL+®

GETHOURNUM

Name:
GetHourNum

Syntax:
INTEGER GetHourNum(Q);

Description:

Returns an integer corresponding to the number of hoursin the current time.

Parameters:

None.

Return Value:

The number of hours from 0 to 23 (24-hour time format).

Example:

INTEGER NumHours;

FUNCTION MAINQ)
{

NumHours = GetHourNum();
PRINT(“The Number of hours on the clock is %d\n”’, NumHours);

}
An example output of thiswould be “The Number of hours on the clock is 22",

Version:
SIMPL+ Version 1.00

246 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GETHSECONDS

Name:
GetHSeconds

Syntax:
INTEGER GetHSeconds();

Description:

Returns an integer corresponding to the number of hundredths of a second based on
the system clock. Typically, this function could be used for very finetiming, to
determine if a specific amount of time has elapsed.

Parameters:

None.

Return Value:
The number of hundredths of a second based on the system clock.

Example:

INTEGER OldTime, NewTime, Loop;

Loop=0;
OldTime=GETHSECONDS() ;
WHILE(Loop < 10000)

{

Loop = Loop + 1

}
NewT ime=GETHSECONDS() ;

PRINT (“Elapsed Time is %d hundredths of a second.\n”,
Newtime-OldTime);

The output of this code would be *Elapsed Time is 400 hundredths of a second.”

ﬂ NOTE: Thisisbad programming as it ties up the CPU.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 247

Software

Crestron SIMPL+®

GETMINUTESNUM

Name:
GetMinutesNum

Syntax:
INTEGER GetMinutesNum();

Description:

Returns an integer corresponding to the number of minutesin the current time.

Parameters:

None.

Return Value:

The number of minutes from 0 to 59.

Example:

INTEGER NumMinutes;

FUNCTION MAINQ)
{

NumMinutes = GetMinutesNum()

PRINT(“The Number of minutes on the clock is %d\n”,

NumMinutes);

}

An example output of thiswould be “The Number of minutes on the clock is 33".

Version:
SIMPL+ Version 1.00

248 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GETMONTHNUM

Name:
GetMonthNum

Syntax:
INTEGER GetMonthNum();

Description:

Returns an integer corresponding to the current month of the year.

Parameters:

None.

Return Value:

The month of the year as an integer from 1 to 12.

Example:

INTEGER NumMonth;

FUNCTION MAINQ)

{
NumMonth = GetMonthNum();

PRINT(“The current month of the year is %d\n”, NumMonth);

}
An example output of thiswould be “The current month of the year is9”.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 249

Software Crestron SIMPL+®

GETSECONDSNUM

Name:
GetSecondsNum

Syntax:
INTEGER GetSecondsNum();

Description:

Returns an integer corresponding to the number of secondsin the current time.

Parameters:

None.

Return Value:

The number of seconds from 0 to 59.

Example:

INTEGER NumSeconds;

FUNCTION MAINQ)
{

NumSeconds = GetSecondsNum();

PRINT(“The Number of seconds on the clock is %d\n”,
NumSeconds) ;

3
An example output of thiswould be “The Number of seconds on the clock is 25",

Version:
SIMPL+ Version 1.00

250 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

GETTICKS

Name:
GetTicks

Syntax:
INTEGER GetTicks(Q);

Description:

Returns an integer corresponding to the number of system ticks. Eachtick is1/112.5
seconds on an X-generation control system, or 0.01 seconds on a 2-series control
system. Typically, this function could be used for very fine timing, to determineif a
specific amount of time has elapsed. The use of this function is discouraged,
GetHSeconds() should be used instead.

Parameters:

None.

Return Value:

The number of ticksin the clock.

Example:

INTEGER OldTime, NewTime, Loop;

Loop=0;
OldTime=GETTICKS(Q);
WHILE(Loop < 10000)
{

Loop = Loop + 1;

}
NewTime=GETTICKS();

PRINT(“Elapsed Time is %d ticks\n”, Newtime-OldTime);
An example output from this code fragment would be “Elapsed Timeis 7000 ticks”’.

ﬂ NOTE: Thisisbad programming as it ties up the CPU.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 251

Software

Crestron SIMPL+®

GETYEARNUM

Name:
GetY earNum

Syntax:
INTEGER GetYearNum();

Description:

Returns an integer corresponding to the current year.

Parameters:

None.

Return Value:

Theyear asan integer. The full year is specified. For example, the year 2000 will
return the integer 2000.

Example:

INTEGER NumYear;

FUNCTION MAINQ)
{

NumYear = GetYearNum();
PRINT(“The current year is %d\n”, NumYear);

}
An example output from this would be “The current year is 1999".

Version:
SIMPL+ Version 1.00

252 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

MONTH

Name:
Month

Syntax:
STRING Month();

Description:

Returns the current month as a string.

Parameters:

None.

Return Value:

Thecurrent monthisreturned in astring. Valid returns are January, February, March,
April, May, June, July, August, September, October, November, or December.

Example:
STRING TheMonth$[100];

FUNCTION MAINQ)

{
TheMonth$=MONTHQ) ;

PRINT(“The Month is %s\n”, TheMonth$);
¥
An example output of thiswould be “The Month is September”.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 253

Software Crestron SIMPL+®

SETCLOCK

Name:
SetClock

Syntax:

SetClock(INTEGER HOURS, INTEGER MINUTES, INTEGER
SECONDS) ;

Description:
Sets the system clock.

Parameters:

HOURS san integer containing the hour portion of thetimeto which the clock is set.
HOURS is expressed in 24-hour format, which can range from 0 to 23.

MINUTESIisan integer containing the minutes portion of the timeto which the clock
isset. MINUTES range from 0 to 59.

SECONDS i saninteger containing the seconds portion of thetimeto which the clock
is set. SECONDS range from 0 to 59.

Return Value:

None.

Example:

ANALOG_INPUT Hours, Minutes, Seconds;

CHANGE Hours, Minutes, Seconds
{

SetClock(Hours, Minutes, Seconds);
PRINT(“Current Time is: %s\n”, Time());
}

In this example, the Hours, Minutes, and Seconds are specified from an externa
SIMPL Program. For example, if Hours = 5, Minutes = 10, Seconds = 25, then the
output will be Current Timeis: 05:10:25.

Version:
SIMPL+ Version 2.00

254 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

SETDATE

Name:
SetDate

Syntax:
SetDate(INTEGER MONTH, INTEGER DAY, INTEGER YEAR);

Description:
Sets the system date.

Parameters:

MONTH isan integer containing the month to which the date is set. A valid rangeis
1 through 12, corresponding to January through December.

DAY isaninteger containing the day of the month to which the dateis set. Therange
varies from month to month, but always starts at 1.

YEAR isan integer containing the year to which the date is set. The year isfour
digits, i.e. 1999.

Return Value:

None.

Example:

ANALOG_INPUT Month, Day, Year;

CHANGE Month, Day, Year

{

SetDate(Month, Day, Year);
PRINT(“Current Date is: %s\n”, Date(l));
}

In this example, Month, Day, and Y ear come from a SIMPL Windows program. For
example, if Month = 12, Day = 25, Y ear = 1999, the output from this program will
be Current Date = 12/25/1999.

Version:
SIMPL+ Version 2.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 255

Software Crestron SIMPL+®

TIME

Name:

Time

Syntax:
STRING TIMEQ;

Description:

Returns a string containing the current system time.

Parameters:

None.

Return Value:

Thereturn string contains thetimein HH:MM:SSformat, in 24-hour time. If avalue
isnot two digitswide, it is padded with leading zeros.

Example:

STRING TheTime$[100];

FUNCTION MAINQ)

{
TheTime$=TIMEQ);

PRINT(“The Time is %s\n”, TheTime$);

}
An example output from thiswould be “The Time is 14:25:32".

Version:
SIMPL+ Version 1.00

256 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Walit Events
Wait Events Overview

When writing a SIMPL + program, it is often desirable to have an event that will be
processed a predetermined amount of time after it istriggered. The WAIT event
allows a block of code to be executed after a specified amount of time. There are
related functionswhich allow WAITSto be paused, resumed, cancelled, or have their
times changed. The system supports up to 200 total timed eventsthat may be running
at any given time across all SIMPL+ modules.

Timed eventsinclude: WAIT, DELAY, and PAUSE statements.

A WAIT statement differsfrom aDELAY in both timing and order of statement
execution. In aWAIT statement, the WAIT block executes only after the specified
amount of time, but execution proceeds immediately to the statement following the
WAIT block. InaDELAY, al execution is halted until the delay is finished.

Language Reference Guide - DOC. 5797G SIMPL+® @ 257

Software Crestron SIMPL+®

CancelAllWait
Name:
CancelAllWait
Syntax:
CancelAllWait();

Description:

Cancels al WAIT eventsfor the current SIMPL+ program. When an event is
cancelled, it isremoved from the wait list and will not activate. There is no effect on
wait events that have finished running.

Parameters:

None.

Return Value:

None.

Example:
DIGITAL_INPUT Trig, KillWaits;

PUSH Trig
{
WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
{
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”);
}
}
PUSH Killwaits
{
CancelAllwait();
}

In this example, when Trig is pushed, a 10-second and 20-second event are
scheduled. Whichever wait events are still running when KillWaitsis
triggered, will be removed from the Wait list and will not get activated.

Version:
SIMPL+ Version 1.00

258 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

CancelWait

Name:
CancelWait

Syntax:
CancelWait(NAME) ;

Description:

Cancels a specified named WAIT event in the current SIMPL+ program. When an
event iscancelled, it is removed from the wait list and will not activate. Thereisno
effect if the wait event has finished running.

Parameters:
NAME isaname of apreviously defined and named WAIT event.

Return Value:

None.

Example:
DIGITAL_INPUT Trig, KillWaits;

PUSH Trig
{
WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
{
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”);
}
}
PUSH KillWaits
{
Cancelwait(FirstWait);
}

In this example, when Trig is pushed, a 10-second and 20-second event are
scheduled. When KillWaitsistriggered, if FirstWait is still on thewait list, it will be
removed from thewait list and will not get activated. SecondWait will activate at the
end of the 20-second wait time.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 259

Software Crestron SIMPL+®

PauseAllWait

Name:
PauseAllWait

Syntax:
PauseAllWait();

Description:

Pauses all WAIT eventsfor the current SIMPL + program. When an event is paused,
thetimer for it freezes and may later be resumed, retimed, or cancelled. When await
isresumed, it executes the remaining time from when it was paused until the defined
wait time.

Parameters:

None.

Return Value:

None.

Example:
DIGITAL_INPUT Trig, PauseWaits;

PUSH Trig
{
WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
{
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”;
}
}
PUSH PauseWaits
{
PauseAllWaits();
}

In thisexample, when Trig is pushed, a 10-second and 20-second event is schedul ed.
When PauseWaits istriggered, any of the running WAIT events will be halted, but
may later be resumed, cancelled, or retimed.

Version:
SIMPL+ Version 1.00

260 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

PauseWait

Name:

PauseWait

Syntax:
PauseWait(NAME) ;

Description:

Pauses a specified named WAIT event in the current SIMPL+ program. When an
event is paused, the timer for it freezes and may later be resumed, retimed, or
cancelled. When await isresumed, it executes the remaining time from when it was
paused until the defined wait time.

Parameters:
NAME isaname of apreviously defined and named WAIT event.

Return Value:

None.

Example:
DIGITAL_INPUT Trig, PauseWait;

PUSH Trig
{
WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
{
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”;
}
}
PUSH PauseWait
{
PauseWait(SecondWait);
}

In thisexample, when Trig is pushed, a 10-second and 20-second event is scheduled.
When PauseWait is triggered, the SecondWait event will be paused if it has not
aready run to completion. It may be later cancelled, resumed, or retimed.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 261

Software Crestron SIMPL+®

ResumeAllWait

Name:
ResumeAllWait

Syntax:
ResumeAllWait();

Description:

Resumes all WAIT eventsfor the current SIMPL + program that had been previously
paused. The WAIT will execute when the time from when it was frozen until the
specified wait time has el apsed.

Parameters:

None.

Return Value:

None.

Example:
DIGITAL_INPUT Trig, PauseWaits, ResumeWaits;

PUSH Trig

{
WAIT(1000, FirstWait)

}
PRINT(“Wait 1 Triggered!\n”);

{
WAIT(2000, SecondWait)

}
PRINT(*“Wait 2 Triggered!\n”;

3
b
PUSH PauseWaits

{
PauseAllWait();

b
PUSH ResumeWaits

{
ResumeAllWaits();

}

In thisexample, when Trig is pushed, a 10-second and 20-second event is scheduled.
When PauseWaitsistriggered, any of the running WAIT eventswill be halted. When
ResumeWaits is triggered, the previously paused waits will resume from when they
were paused. For example, if FirstWait and SecondWait were paused at 5-second,
when ResumeAllWait is called, FirstWait will have 5-seconds more to execute and
SecondWait will have 15-seconds more to execute.

Version:
SIMPL+ Version 1.00

262 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

ResumeWait

Name:

ResumeWait

Syntax:
ResumeWait(NAME) ;

Description:

Resumes the specified named WAIT event in the current SIMPL + program that has
been previously paused. The WAIT will execute from the time when it was paused
until the specified wait time has elapsed.

Parameters:

NAME isaname of apreviously defined and named WAIT event.

Return Value:

None.
Example:

DIGITAL_INPUT Trig, PauseWaits, ResumeWaits;
PUSH Trig

{
WAIT(1000, FirstWait)

}
PRINT(*“Wait 1 Triggered!\n”);

{
WAIT(2000, SecondWait)

}
PRINT(“Wait 2 Triggered!\n”;
}
¥
PUSH PauseWaits
{
PauseAllWait();
3
PUSH ResumeWait
{
ResumeWait(FirstWait);
3

In this example, when Trig is pushed, a 10-second and 20-second event is
scheduled. When PauseWaits istriggered, any of the running WAIT events
will be halted. When ResumeWaitsistriggered, the FirstWait event that was
previously paused will resume from when it was paused. For example, if
FirstWait was paused at 5-seconds, when ResumeWait(FirstWait) is called,
FirstWait will have 5-seconds more to execute. SecondWait will still be
paused.

Version:
SIMPL+ Version 1.00

Language Reference Guide - DOC. 5797G SIMPL+® @ 263

Software

Crestron SIMPL+®

RetimeWait

Name:
RetimeWait

Syntax:
RetimeWait(INTEGER TIME, NAME);

Description:

Changes the time for await event in progress. When a WAIT isretimed, the WAIT
isrestarted. For example, if a5-second wait is 3-second in, and it isretimed to 10-
second, a full 10-seconds must elapse before the WAIT triggers.

Parameters:

TIME isaninteger that specifiesthe new wait time in hundredths of asecond. If time
isset to 0, the event will occur immediately.

NAME isaname of apreviously defined WAIT event.

Return Value:

None.

Example:
DIGITAL_INPUT Trig, ChangeWaitTime;

PUSH Trig

{
WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
}

¥

PUSH ChangeWaitTime

{

RetimeWait(500, FirstWait);

¥

In this example, when Trig is pushed, a 10-second event is scheduled. If
ChangeWaitTime is activated while FirstWait is still running, the time will be reset
to 5-seconds. If FirstWait has expired, no action will be taken.

Version:
SIMPL+ Version 1.00

264 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Wait

Name:
Wait

Syntax:

Wait(INTEGER TIME[, NAME])
{1

<statements>

[+

Description:

NOTE: Thereisno semicolon after aWAI T statement becauseit hasaclause or block
following it.

Adds an event to alist to be executed in TIME hundredths of a second. Giving a
WAIT anameisoptional, but to cancel, pause, resume, or retime await, aname must
be specified. A currently running WAIT will finish before being entered into the
WAIT list again. For example, if in an endless WHILE loop, a second WAIT will
only begin after the first finishes.

When the system encountersa WAIT, the event is put into the WAIT scheduler. The
SIMPL + module continues to execute without interruption. At some point, atask
switch will occur (either due to event termination or other means, refer to "Task
Switching" that begins on page 8). The WAIT schedule is checked by the operating
system after atask switch, and if await event needsto be serviced, it isrun and then
terminates. Note that the module may task switch away while inside the WAIT, just
likein other events.

AWAIT statement differsfrom aDELAY in both timing and order of statement
execution. In aWAIT statement, the WAIT block executes only after the specified
amount of time, but execution proceeds immediately to the statement following the
WAIT block. InaDELAY, al execution is halted until the delay is finished.

Parameters:

TIME isaninteger, expressed in hundredths of asecond. For example, 525 specifies
await time of 5.25 seconds.

NAME is an optional name given to the WAIT event. It has the same syntax asa
variable name. Note that you cannot put two separate WAIT statementsin the same
SIMPL + program that have the same NAME (this will cause a compilation error).

Wait Statement block are global variables and variables declared locally within the
Wait Statement's block. Local variables declared within the function containing the
Wait Statement are not allowed.

ﬁ NOTE: (2-Series Only) The only variable types that are allowed to be used within a

Language Reference Guide - DOC. 5797G SIMPL+® @ 265

Software Crestron SIMPL+®

Example:

INTEGER WaitTime;
DIGITAL_INPUT StopVCR;
ANALOG_INPUT SysWait;
STRING_OUTPUT VCR$;

PUSH StopVCR

{
WAIT (SysWait, VCR_Stop)
{
VCR$ = “\x02STOP\x03”’;
}
}
FUNCTION MyFunc()
{
while (1)
{
// statements (will keep executing during the wait
statement)
Wait(500)
{
// statements (execute once for each wait statement
occurence)
}
// statements (will keep executing during the wait
statement)
}
}

In thisexample, aVCR istriggered to go into STOP, but the STOP command is
delayed based upon atime specified by an analog input to the SIMPL+ program.

Version:
SIMPL+ Version 3.00 - local variables are alowed within WAIT statements.
SIMPL+ Version 1.00

266 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

User Defined Functions

User Defined Functions Overview

A SIMPL+ program may have functions that are defined by users. Typically, a
function is defined to modularize code to make repetitive tasks easier to perform or
make code easier to read.

Function Definition

<function_type> <function_name> ([argument list])
{

<statements>

[RETURN <expression>;]

}

The following table demonstrates what <function_type> may be, what it means, and
what data may be returned to the caller. Note that in all cases, aRETURN is not
required, as the system defaults it to a shown specified value.

<function type> MEANING RETURN VALUE
FUNCTION Returns no data to the No RETURN
caller.
INTEGER_FUNCTION Returns an integer value to | INTEGER expression
the caller. (default 0)
LONG_INTEGER_FUNCTION Returns a long integer LONG_INTEGER expression
value to the caller. (default 0)
SIGNED_INTEGER_FUNCTION Returns a signed integer | SIGNED_INTEGER expression
value to the caller. (default 0)
SIGNED_LONG_INTEGER_FUNCTION Returns a signed long SIGNED_LONG_INTEGER expression
integer value to the caller. (default 0)
STRING_FUNCTION Returns a string value to | STRING expression
the caller. (default)

Language Reference Guide - DOC. 5797G SIMPL+® @ 267

Software

Crestron SIMPL+®

1

Function Parameters

NOTE: Passing STRINGswith BY VAL and BY REF is not allowed in the 2-Series
Control System. All STRINGs are passed by referenced in the 2-Series Control
System.

NOTE: Passing I/O datatype variables (DIGITAL_INPUT, ANALOG_INPUT and
STRING_INPUT) isnot allowed in the 2-Series Control System.

Functions may contain alist of parameters that are passed by the caller. Typically,
datais passed to afunction in order to make the code readabl e, maintainable, and less
proneto bugs. SIMPL+ Version 1.00 did not allow datato be passed to functions. The
only way to get data into functions was to declare global variables and have the
functions reference the global variables.

The function argument list contains a comma separated list of arguments. The
arguments are of the form:

[ByRef | Byval] <INTEGER | LONG_INTEGER | SIGNED_INTEGER
| SIGNED_LONG_INTEGER | STRUCTURE> <variable_ name>

ByRef and ByVa are keywords telling the system the read/write permissions and
local behavior for the variable in the function. They are discussed in the next section.

INTEGER, STRING or STRUCTURE tells the function the<variable_name> type.
BUFFER_INPUT, STRING_INPUT, STRING_OUTPUT, and STRING
declarations are passed into afunction using the STRING type. All other types are
passed using the INTEGER type.

The function refers to the passed variable as <variable_name>. Note that for a one-
dimensiona array, the syntax is <variable_name>[] and for atwo-dimensional array
the syntax is <variable_name>[][].

268 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Keyword Meanings

ByRef, ByVal, ReadOnlyByRef

Control System. All STRINGs are passed by referenced in the 2-Series Control
System.

NOTE: Passing I/O datatype variables (DIGITAL_INPUT, ANALOG_INPUT and
STRING_INPUT) isnot allowed in the 2-Series Control System.

9 NOTE: Passing STRINGswith BY VAL an BY REF is not allowed in the 2-Series

KEYWORD

MEANING

ByRef

ByVal

ReadOnlyByRef

Changes made to the variable that is passed to the function actually change the contents of the
source variable. Note that any change made to the source variable will be reflected in the function.
For example, if an INTEGER is passed ByRef and its state changes, the function will know about
the change. Itis typically more efficient to pass a variable by reference because space is not taken
up by making local copies as with ByVal.

Also referred to as “Pass by Reference”.

The variable that is passed to the function has a local copy made of it. Changes made to the
variable in the function are made on a local copy. The local copy is destroyed when the function
terminates. The contents of this variable are a “snapshot” of the contents of the variable that was
passed. Unlike Pass by Reference, changes made to the original variable that was passed to the
function are not recognized in the function. When an expression is passed, it may only be passed
by value since there is no source variable that the ByRef keyword may potentially modify.

Also referred to as “Pass by Value”.

This performs a Pass by Reference, identical to ByRef, but the compiler catches operations that
write to the variable that has been passed. This would be typically be used if a DIGITAL_INPUT
or other input type has been passed and which cannot be written. It is also used as a tool to catch
unintentional writes to variables that have been passed.

If not specified in the function declaration, variables will be passed by reference if
applicable. If the variable cannot be passed by reference (such as an element of an
array), it will be passed by value. Any expression will always be passed by value.

Thefollowing table shows legal access methods for the basic data typeswhen passed
to afunction.

Language Reference Guide - DOC. 5797G SIMPL+® @ 269

Software Crestron SIMPL+®

R: Read access dlowed. W: Write access allowed.

(E1): Generates a RunTime Error, not allowed to be writeto INPUT vaues. The
ReadOnlyByRef generates a compile error instead of a RunTime Error.

Byval ByRef ReadOnlyByRef
VARIABLE TYPE [LOCAL [SOURCE] [SOURCE]
COPY]
ANALOG_INPUT R, W R, (E1) R
ANALOG_INPUT array - R, (E1) R
ANALOG_INPUT array element R,W - -
ANALOG_OUTPUT R,W = R
ANALOG_OUTPUT array - - R
ANALOG_OUTPUT array element R, W - =
BUFFER_INPUT R, W R R
BUFFER_INPUT array - R R
BUFFER_INPUT array element R, W - -
DIGITAL_INPUT R, W R, (E1) R
DIGITAL_INPUT array - R, (E1) R
DIGITAL_INPUT array element R, W = =
DIGITAL_OUTPUT R, W - R
DIGITAL_OUTPUT array - - R
DIGITAL_OUTPUT array element R, W - -
INTEGER R, W R, W R
INTEGER array - R, W R
INTEGER array element R, W = =
LONG_INTEGER R, W R, W R
LONG_INTEGER array - R, W R
LONG_INTEGER array element R, W - -
SIGNED_INTEGER R, W R, W R
SIGNED_INTEGER array - R, W R
SIGNED_INTEGER array element R, W - =
SIGNED_LONG_INTEGER R, W R, W R
SIGNED_LONG_INTEGER array - R, W R
SIGNED_LONG_INTEGER array element R, W - -
STRING R, W R, W R
STRING array - R, W R
STRING array element R, W - =
STRING_INPUT R, W R R
STRING_INPUT array - R R
STRING_INPUT array element R, W - -
STRING_OUTPUT - = =

270 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Byval ByRef ReadOnlyByRef
VARIABLE TYPE [ICESICD:%L [SOURCE] [SOURCE]
STRING_OUTPUT array - - -
STRING_OUTPUT array element - - =
STRUCTURE - R, W R
STRUCTURE element (INTEGER) R, W S =
STRUCTURE element (LONG_INTEGER) R, W - -
STRUCTURE element (SIGNED_INTEGER) R, W = =
STRUCTURE element (SIGNED_LONG_INTEGER) R, W - -
STRUCTURE element (STRING) - - =

R: Read access allowed. W: Write access allowed.

(E1): Generatesa RunTime Error, not allowed to be write to INPUT values. The
ReadOnlyByRef generates a compile error instead of a RunTime Error.

An example of afunction declaration that has no parameters and returns no value
would be;

FUNCTION PrintText()

{
// Code

}
The following is an example of a function declaration that takes an INTEGER and
returns a STRING. The INTEGER is passed by value, so it cannot be modified.

NOTE: Itisnot strictly necessary to use the “ByVal” keyword here. ByVal can be
used to make sure that no modifications to the original variable are done by accident
within the function.

STRING_FUNCTION ComputeDate(ByVal INTEGER TheMonth)

{

STRING Month$[20];

// Code to compute Month$..
RETURN(Month$) ;

}

Thefollowing isan example of afunction declaration that takesa STRING array and
sortsit and an integer that takes the actual number of elementsthat are contained in
the array. It returns an INTEGER error code:

INTEGER_FUNCTION SortNamelnDatabase(STRING
Name[], INTEGER NumElements)

{

INTEGER Error;

// Code to sort Names[] and setError..
RETURN(Error);

3

Language Reference Guide - DOC. 5797G SIMPL+® @ 271

Software

Crestron SIMPL+®

1

Returning a Value

NOTE: A zero (0) message is automatically returned if no return statement is
encountered.

The syntax for returning avalue from integer and string functionsis RETURN
<expression>;. ToreturnavaluefromaFUNCTION, PUSH, CHANGE, RELEASE
or EVENT, the syntax is RETURN.

Integer functionsinclude INTEGER_FUNCTION,
SIGNED_INTEGER_FUNCTION, LONG_INTEGER_FUNCTION and
SIGNED_LONG_INTEGER_FUNCTION. String functionsinclude
STRING_FUNCTION.

For Integer Functions, any valid integer expression islegal. For example:

RETURN (25);
RETURN (Z + MULDIV(A,B,C) + 100);

Arelegal (assumingZ, A, B, C, are INTEGERYS). If no RETURN statement is present
in aninteger, Oisreturned.

For astring function, any valid stringislegal (string expressionsare not allowed). For
example:

STRING str[100];
RETURN “Hello!\n”’;
RETURN (str);

Arelegal (assuming Z isan INTEGER and A$isa STRING). If no RETURN
statement is present in a STRING_FUNCTION, an empty string (“*) is returned.

In SIMPL Version 3.00, the RETURN statement without arguments can be used in
al functions that do not return strings or integers. For example:

INTEGER_FUNCTION MylntegerFn ()
{

IF (1)

{

RETURN (1);

b

RETURN (0);

b

LONG_INTEGER_FUNCTION MyLongIntFn ()
{

IF (1)

{

SIGNED_INTEGER_FUNCTION MySignedIntFn ()
{

IF (1)

{

RETURN (1);

b

RETURN (0);

b
SIGNED_LONG_ INTEGER_FUNCTION MySignedLonglntFn ()

272 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

{

IF (1)

{

RETURN (1);

}

RETURN (0);

3
STRING_FUNCTION MyStringFn ()
{

IF (1)

{

RETURN (*abc™);

3
RETURN (“def”);

3
FUNCTION MyFn ()
{

IF (1)
{
return;
3

}
EVENT
{

if (1)
return;

3
PUSH

{
if (1)
return;

3
RELEASE

{
if (1)
return;

}
CHANGE

{
if (1)
return;

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 273

Software Crestron SIMPL+®

Calling a Function
When calling a function where the return is being used, the syntax is:
<variable> = <function_name>([argument_list]);
For example,
INTEGER X, ANALOG1, ANALOGZ2;
STRING Q$[20], B$[50];

X = ComputeChecksum(Analogl, Analog2);
Q$ = DoSomething(Analogl, B$);

Arelegal.

If the return is not going to be used, or thereis no return (in the case of a
FUNCTION), the syntax is:

<CALL> <function_name>([argument_list]);
For example,

CALL DoSomethingElse(); (X-Generation or 2-Series)
or

DoSomethingElse() ; (2-Series only)

body of afunction may not contain a call to that function.

NOTE: The keyword, CALL, isrequired in the X-Generation control system, and
optional in the 2-Series control system. CALL may not be used when calling non-user

defined functions. For example:
CALL Print(str, “abc”); // lllegal

9 NOTE: (X-Generation only) Functions do not support recursion, i.e. the code in the

274 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Function Libraries

cases, the same function needs to be used across several different modules. Although
the code could be rewritten in all modules (as was the case with SIMPL+ Version
1.00), SIMPL+ Version 2.00 supports function libraries.

ﬁ NOTE: A function may be placed in the same body of code as the caler. In some

A function library is simply agroup of functionsin aSIMPL+ file. Thefileis saved
asaSIMPL+ Library File (*.USL), from the Save As dialog in the SIMPL + editor.

In order to include a function library, the #CRESTRON_L IBRARY or
#USER_LIBRARY directives are used. Thelibraries are searched in the order they
areincluded, in case afunction name is used in more than one library. The first

function found isused. Refer to #CRESTRON_LIBRARY and #USER_LIBRARY
for more information.

Language Reference Guide - DOC. 5797G SIMPL+® @ 275

Software Crestron SIMPL+®

Program Structure

When anew SIMPL+ program is created, atemplate is provided that lists the order
inwhich constructs and statements should be defined. Sections can be uncommented
and expanded out to implement the desired code.

A SIMPL+ program layout would consist of, in order:
1. Compiler Directives
2. Input/Output definitions From/To a SIMPL Program

3. Global declarations for the module, including STRING, INTEGER,
arrays, structures, etc.

4. FUNCTION declarations
5. PUSH/REL EASE/CHANGE statements
6. FUNCTION MAIN

NOTE: All of these are not mandatory and may be left out as needed.
ﬂ NOTE: In SIMPL+ Version 3.00, local variables are allowed.

Forward references are not alowed in a SIMPL+ program. This means you cannot
CALL afunction before it has been defined. Thisis the reason FUNCTION
declarations are placed before other code. If function A calls function B, then
function B should be located first in the source file.

FUNCTION MAIN isaspecial case function. It isnot required, but any code present
between the { and } isexecuted at startup. Thisistypically used for initialization
purposes.

Example:

FUNCTION MAINQ)

{

MyVar=0;

For(1=1 to 10)
B[I] = 1;

Sometimes function MAIN() contains an endlessloop withaDELAY statement that
executes periodically while the program runs.

276 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Common Runtime Errors

Common Runtime Errors Overview

The following errors will occur at runtime. In order for these error messagesto be
seen, the Crestron Viewport must be open and communications with the control
system (via Ethernet or the computer port) must be established.

Array out of bounds

An attempt was made to access an element of an array that is outside the declared
range of the array. For an array size declaration, the allowable indices are 0 through
the declared size. For example, INTEGER X[10][10] would allow accessto X[0][0]
through X[10][10].

Bad printf format

The MAKESTRING or PRINT functions have encountered an invalid character
following the % character. The most common reason for thisiswhen a% is actually
required, %% should be used to print asingle % character. Refer to MAKESTRING
and PRINT for afull list of valid format specifiers.

Full Stack

The SWITCH construct may only have 32 CASE statementsin SIMPL+ Version
1.00. If more than 32 are used, this error appears.

Library not found

This occurs when a module tries to call a user-defined function that existsin an
externa library which was specified with #CRESTRON_LIBRARY or
#USER_LIBRARY . During compilation, the compiler builds afile containing the
libraries to send to the control system. Typically, this could be caused by atransfer
error which would be seen at load time.

Rstack overflow

The Rstack that this message refers to is the Return Stack. When an event is
interrupted by some means (via a process_|logic statement or an implied task switch
from inside aloop), information about that event is put on the Return stack, so that
when the event resumes, it knows how to continue. When the event continues, the
saved information is removed from the return stack.

If during this interruption the event is called again, and interrupted again, more
information is saved on the return stack. Thereturn stack is of limited sizeand if this
keeps occurring, the Return stack will not have enough space to contain more data
and this message will be issued.

For afurther discussion of how to handle the programming when events are
interrupted, refer to “ Task Switching” on page 22.

Language Reference Guide - DOC. 5797G SIMPL+® @ 277

Software

Crestron SIMPL+®

Scheduler is full

Any time-based function such asDELAY, PULSE, or WAIT will schedule an event
inSIMPL+. A scheduled event will add one or more entriesto the SIMPL + scheduler.
The scheduler currently supports 200 events and is global to the entire SIMPL+
system. If the scheduler isfull and another event is added, this message is issued.

NOTE: Themessage“ Skedder Full” isissued from aSIMPL program, not SIMPL +.
“Skedder full” isasimilar problem, but results if too many time-based events are
occurring in a SIMPL program.

String array out of bounds

An attempt was made to access an element of astring array that is outside the declared
range of the array. Remember that for an array size declaration, the allowableindices
are 0 through the declared size. For example, STRING X$[5][20] declaressix strings
of 20 bytes each, accessed via X$[0] through X9$[5].

Too much ram allocated

Too much RAM was allocated for the data structures. Approximately 60K is
available for user data. When compiling a program, it will tell you how much
memory is required for oneinstance of the module. Each instantiation of the module
ina SIMPL program takes up that much more space. For example, if amodule says
it requires 100 bytes after it is compiled, two instances of that module will require
200 bytes. If this message is received, reduce the number of variables. If string or
buffers have been declared overly large, thisis an easy place to reduce memory
requirements.

278 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example Programs

Example 1: Hello, World!

// A digital input from the SIMPL program DIGITAL_INPUT
TRIG;

// Upon the digital signal TRIG going high or low, the Hello,
// World! message is printed.

CHANGE TRIG

{

PRINT(“Hello, World!'\n”);
b

// Main is only called once when the system starts up or is
reset.

FUNCTION MAINQ

{

PRINT(“Main Starts!\n”);
¥

Language Reference Guide - DOC. 5797G SIMPL+® @ 279

Software

Crestron SIMPL+®

Example 2: 8-Level switch on a Pesa switcher

#SYMBOL_NAME “Pesa Switcher - 8 Levels”
#HINT “Creates Pesa CPU-Link H command for Switching”

DIGITAL, ANALOG and SERIAL INPUTS and OUTPUTS

*hXhkhx Kk Kk kk * kX

******/

// Digital trigger from the SIMPL program - this sends the
command

// string out.

DIGITAL_INPUT TRIG;

// Analogs for the output and 8 levels of the switcher from the
// SIMPL program.

ANALOG__INPUT

OUTPUT,LEVEL1,LEVEL2,LEVEL3,LEVEL4,LEVELS5,LEVEL6,LEVEL7,LEVE
L8;

// The output string that is to be sent from the SIMPL+ program
to

// the SIMPL program to the switcher.
STRING_OUTPUT COMMANDS;

/

*hdhhkkkx * *hxhhhkx

Global Variables

(Uncomment and declare global variables as needed)

*/
INTEGER I, COUNT, CKSLOW, CKSHI;
STRING PESABUF[30];

/

B T e e o e i e e e o S A S e

Event Handlers

(Uncomment and declare additional event handlers as needed)

*/
PUSH TRIG
{

// Format command which stores the switcher command in a

280 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

// temporary buffer. A Command looks like
H{out}{l11}{12}.. {18}

/7 {2 byte checksum}{CR}{LF} where {out} and {l1}..{18} are 3
// digit ASCII1 bytes with leading zeros. An example is

// H001001002003004005006007008{2 bytes checksum}{CR}{LF}

//
makestring(PESABUF, ’H%03d%03d%03d%03d%03d%03d%03d%03d%03d™",

// OUTPUT, LEVEL1, LEVEL2, LEVEL3, LEVEL4, LEVEL5, LEVELS6,
// LEVEL7, LEVELS8);

COUNT=0; // Checksum count initialized to O.

// Add each byte in the string to the running count.
for(i=1 to len(pesabuf))

COUNT = COUNT + BYTE(PESABUF, 1);

// The checksum is computed by taking the COUNT and throwing
// away all but the lower byte. The upper nibble + "0 is the
// high order checksum byte, the lower nibble + "0" is the low
// order checksum byte.

// Compute the low byte of the checksum.
CKSLOW = (COUNT & OxOF) + "0%;

// Compute the high byte of the checksum.
CKSHI = ((COUNT & OxF0O) >> 4) + "07;

// Send the checksum command to the COMMAND$ that gets routed
// to the switcher via the SIMPL program.
makestring(COMMANDS, “%s%s%s’, PESABUF, CHR(CKSLOW),
CHR(CKSHI1));

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 281

Software

Crestron SIMPL+®

Example 3: Computing the Number of Days in a
Month (Using Functions)

#SYMBOL_NAME ““Compute Number of Days in a Month”
#ANALOG_INPUT MONTH;
#ANALOG_OUTPUT DAYS;

INTEGER_FUNCTION ComputeDaysInMonth(INTEGER Month)

{

// Note that this computation does NOT take into account leap

// year!

INTEGER Days;

SWITCH (Month)

{

CASE(2):
CASE(4):
CASE(6):
CASE(9):
CASE(11):

Default:
b

Days
Days
Days
Days
Days
Days

Return(Days);

}

CHANGE MONTH

{

28;
30;
30;
30;
30;
31;

// February
// April

// June

// September
// November
// All others

DAYS = ComputeDaysInMonth(MONTH) ;

}

282 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example 4: Computing the Number of Days in a
Month (Using Function Libraries)

Thefollowing codewould be saved as, in thisexample, “My Function Library.USL".

INTEGER_FUNCTION ComputeDaysInMonth(INTEGER Month)

{

// Note that this computation does NOT take into account leap
// year!

INTEGER Days;

SWITCH(Month)
{
CASE(2): Days = 28; // February
CASE(4): Days = 30; // April
CASE(6): Days = 30; // June
CASE(9): Days = 30; // September
CASE(11): Days = 30; // November
Default: Days = 31; // All others
¥
Return(Days) ;
3

The following code can be saved as any filename:

#SYMBOL_NAME “Compute Number of Days in a Month”
#USER_LIBRARY “My Function Library”

#ANALOG_INPUT MONTH;

#ANALOG_OUTPUT DAYS;

CHANGE MONTH

{

DAYS = ComputeDaysInMonth(MONTH);

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 283

Software Crestron SIMPL+®

File Time and Date Functions Overview

These versions of the Time and Date functionsin agiven SIMPL + program are used
to retrieve information about the current date and time from the file info structure
returned from FINDFIRST/FINDNEXT. Values can be retrieved astext stringsi.e.
“January” or integer values. Typically, integer values are used if computations need
to be performed (i.e. when the date is the 25th, perform a specific action).

WriteLonglintegerArray

Name:
WriteL onglntegerArray

Syntax:

SIGNED_INTEGER WriteLonglntegerArray (INTEGER
file_handle,

LONG_INTEGER ilArray[m][n])

Description:

Writesthe array from afile starting at the current file position. Two bytesarewritten,
most significant first containing the row dimension of the array, then two more bytes
are written, containing the column dimension of the array. Then each long integer is
written as afour byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. al the elements of row O first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
written, because thereisarow 0 and a column 0. Refer to the section entitled
“Reading and Writing Datato aFile” on page 118 for adiscussion of when to usethis
function and when to use the related functions: FileWrite, Writel nteger, WriteString,
WriteStructure, WriteSignedi nteger, WriteL onglnteger, Writel ongSignedinteger,
WritelntegerArray, WriteSignedintegerArray, WriteLonglntegerArray,
WriteLongSignedintegerArray, WriteStringArray.

Parameters:

FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

ilArray is the array whose values are Write.

Return Value:
Number of byteswritten to thefile. If the return valueis negative, it is an error code.

284 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER nFileHandle, iErrorCode;
LONG_INTEGER ilArray[10];

nFileHandle = FileOpen (“MyFile”, _O RDONLY);
IF (nFileHandle >= 0)

{

iErrorCode = WriteLonglntegerArray(nFileHandle, ilArray);
it (iErrorCode > 0)

PRINT (“Array written to file correctly._\n");

else

PRINT (“Error code %d\n”, iErrorCode);

}

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only

Language Reference Guide - DOC. 5797G SIMPL+® @ 285

Software Crestron SIMPL+®

Compiler Errors and Warnings

Compiler Errors and Warnings Overview

The SIMPL+ program compiler errors and warnings are grouped into several
categories, asshown in the following table. Errorsarelisted in numerical order; page
links are provided to detailed descriptions of the errors.

Compiler Errors and Warnings

CATEGORY NUMBER | MESSAGE TEXT PAGE
Syntax Errors 1000 '<identifier>' already defined page 289
1001 Undefined variable: ‘<identifier>’ page 290
Undefined function ‘<identifier>’
1002 Missing '<token>' page 292
1003 Incorrect type '<decl_type>', expected type(s): '<decl_typel[,decl_type2] page 293

[,decl_typen]>'
Incorrect type, expected type(s): '<decl_typel[,decl_type2][,decl_typen]>'

1004 Unmatched symbol: '<identifier>' page 293
1005 Unexpected symbol in compiler directive: '<identifier>' page 294
1006 Invalid #DEFINE_CONSTANT value: '<identifier>' page 294
1007 Missing array index: '<identifier>' page 295
1008 Invalid integer argument or undefined variable: '<identifier>' page 296
1009 Missing structure member: ‘<identifier>' page 297
Structure does not contain member: '<identifier>"
1010 Symbol Name contains illegal character: ';' page 298
1011 Missing return value page 298
1012 Unterminated string constant page 299
1013 Source code does not evaluate to anything page 299
Fatal Errors 1100 Statement outside of function scope page 300
1101 Abort - Error count exceeded <max_errors> page 301
Expression 1200 Invalid numeric expression: '<expression>' page 301
Errors Invalid string expression

Invalid expression: '<expression>'

1201 Invalid \\x sequence page 303
Invalid \\x sequence: '<expression>"'

286 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

CATEGORY NUMBER | MESSAGE TEXT PAGE
Declaration 1300 Array size missing page 304
Errors Array size invalid
1301 Invalid array index page 305
1302 Variable name, ‘<identifier>’, exceeds maximum length of <max> characters| page 306
1303 Declaration type not allowed within structure: '<identifier>" page 307

Structure cannot contain String Arrays or Structure variables: Structure
definitions not allowed within other structures
Local Structure declarations are not allowed

1304 Local variables must be declared at top of function page 308
1305 Local functions not supported page 308
1306 Declaration type can only be used globally: '<identifier>' page 309
1307 Variables must be declared before array declarations: '<identifier>"' page 310
1308 Global variable declaration cannot be declared in library file: '<identifier>' page 311

I/O Declaration cannot be declared in library file: '<identifier>'

1309 Compiler Directive must be set before all global variable declarations page 312
#DEFAULT_NONVOLATILE Compiler Directive already set
#DEFAULT_VOLATILE Compiler Directive already set

1310 Compiler directive cannot be in function scope page 313
1311 Undefined Wait Label: '<identifier>' page 314
Missing, invalid or already defined Wait label: '<identifier>'
1312 Array boundary exceeded maximum size of ‘num_bytes’ bytes page 315
1313 Minimum array size invalid page 315
1314 Minimum array size is not allowed for this datatype: '<identifier>' page 316
Minimum array size for this datatype has already been declared: '<identifier>
Assignment 1400 lllegal Assignment page 317
Errors 1401 Variable cannot be used for assignment: '<identifier>" page 318
1402 Variable can only be used for assignment: '<identifier>" page 318
Function 1500 Argument <arg_num> cannot be passed by reference page 319
Argument Errors | 19857 Argument <arg_num> cannot be passed by value page 320
1502 Function contains incomplete number of arguments page 321
Function call contains an unmatched number of arguments
1503 Input or Output signal expected: '<identifier>' page 321
1504 Incomplete number of format string arguments page 322

Format string contains an unmatched number of arguments
Argument <arg_num> is missing or invalid.
Argument <arg_num> is missing or invalid. <decl_type> expected

1505 Format string contains invalid format specifier page 323
1506 0, 1 or 2 constant expected for argument 1 page 324
1507 Argument <arg_num>: Missing or invalid array page 324
1508 I/O variable cannot be passed to read file functions: '<identifier>' page 325

Language Reference Guide - DOC. 5797G SIMPL+® @ 287

Software Crestron SIMPL+®

CATEGORY NUMBER | MESSAGE TEXT PAGE
Construct Errors | 1600 ‘Function Main' cannot contain function parameters page 326
'Function Main' cannot return a value
1601 Duplicate CASE Statement page 326
Constant expected: '<identifier>'
1602 Switch statement contains 'default’ without 'case’ labels page 327
1603 #CATEGORY does not exist: '<categorgy_number>"' page 328
Defaulting to Category Type, "'32™ (Miscellaneous).
1604 'EVENT' already has a body page 329
1605 Function can only be contained within an event page 329
1606 Statement must be contained within a loop statement page 330
1607 GetlLastModifiedArraylndex may return an ambiguous signal index page 331
1608 Missing library file name page 331
File Errors 1700 End of file reached page 332
1701 Error writing header file: '<file_name>' page 332

Error writing file: '<file_name>'

Error writing library file

Error writing output file

Error creating compiler makefile: '<file_name>'

Error opening compiler source makefile: '<file_name>"'
Error opening source file: '<file_name>'

1702 Error extracting library, '<file_name>', from archive: '<archive_file>' page 332
Complier 1800 'Return’ statement will only terminate current Wait statement's function page 333
Warnings scope
1801 "TerminateEvent' statement will only terminate current Wait statement's page 333
function scope
1802 #CATEGORY_NAME defined more than once. Using: #CATEGORY_NAME | page 334
"<number>"
1803 Possible data loss: LONG_INTEGER to INTEGER assignment page 335

288 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Syntax Errors (Compiler Errors 1000 to 1013)

Compiler Error 1000

syntax error: '<identifier>' already defined

The specified identifier was declared more than once. A variable can only be
declared oncewithinit’ sfunction scope. The sameidentifier cannot be used for more
than one declaration type.

Scope refersto the level at which an Event, user-defined function or statement
resides. Having aglobal scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it residesin.

NOTE: Make sure the identifier has not been declared as another declaration type,
user-defined function, or structure definition.

The following are examples of this error:
INTEGER 1;
INTEGER 1i; // error — i is already defined as an INTEGER
STRING i[100]; // error — i is already defined as an INTEGER

STRUCTURE myStruct

{
INTEGER 1i; // ok — i is a member variable of myStruct
3
INTEGER_FUNCTION MyFunc(INTEGER x, INTEGER y)
{
INTEGER i; // ok
INTEGER 1i; // error - 1 is already defined as a local
INTEGER
INTEGER Xx; // error — x is already defined as a function
// parameter, which makes it a local
// variable in this function
¥
FUNCTION MyFunc() // error — MyFunc() is already defined
// as an INTEGER_FUNCTION
{
3
FUNCTION AnotherFunc(INTEGER x, INTEGER Yy) // ok — x and y
are
// local to this function
{
¥

Language Reference Guide - DOC. 5797G SIMPL+® @ 289

Software Crestron SIMPL+®

Compiler Error 1001

syntax error: Undefined variable: '<identifier>'
Undefined function ‘<identifier>’

The specified identifier was not declared.

All variables and user-defined functions must be declared before they areused. They
must be declared either globally or within the same function scope. Variables from
one program are not accessible from another program.

Scope refersto the level at which an Event, user-defined function or statement
resides. Having aglobal scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.

o Make sure the identifier is spelled correctly
o Make sure the identifier has not been declared locally within another function

o When using structures, make sure the proper ‘dot’ notation is being used when
accessing the structure’ s variabl es (see example below)

The following are examples of thiserror:

INTEGER 1i;

STRUCTURE myStruct

{
INTEGER structMember;

INTEGER structArrMember[10];

myStruct struct;
myStruct structArr[10];

FUNCTION MyFunc(INTEGER X)

{

INTEGER k;

1= 1; // ok

k = 3; // ok

X = 4; // ok

struct._structMember = 5; // ok — proper “dot’
notation

struct.structMember[1l] = 6; // ok — proper “dot’
notation

structArr[1].structMember = 7; // ok — proper “dot’
notation

290 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

structArr[1].structArrMember[2] = 8; // ok — proper “dot’

notation
J = 2; // error — j is not declared
structMember = 10; // error — improper “dot’ notation
structMember[1] = 11; // error — structMember is not an
array
k = AnotherFunc(); // error — AnotherFunc() was not
// declared previously
}

INTEGER_FUNCTION AnotherFunc()

{
k =5; // error — k is a local variable of MyFunc(Q)
X = 6; // error — x is a local variable of MyFunc(Q
Call MyFunc(Q); // ok
Call MyFunk(Q); // error — spelling error
return (1);

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 291

Software

Crestron SIMPL+®

Compiler Error 1002

syntax error: Missing '<token>'

A language element was expected and not found. The compiler expects certain
language elements to appear before or after other elements. If any other language
element isused, the compiler cannot understand the statement. Examplesare missing
parenthesis after a function call, missing semicolons after a statement and missing
braces when defining functions.

A token is alanguage element such as a keyword or operator. Anything that is not
whitespace (i.e.: spaces, tabs, line feeds and comments) is a token.

Examine the last uncommented non-blank line or statement within the program. If a
token was required in a previous statement and was not encountered, the compiler
will continue onto the next line and mark the first token of the new statement as the
error.

The following are examples of thiserror:
STRUCTURE MyStruct

{
INTEGER Xx;
STRING s[100];
}
MyStruct struct; // error — missing “;” from preceding

// structure definition

INTEGER_FUNCTION MyFunc(INTEGER) // error — argument

variable
// not specified
INTEGER x; // error — “{” missing before INTEGER
Print “abc”; // error — missing parenthesis
// should be Print (“abc”);
// printing..
Print “def” // error — error message will occur on
// next statement
// more printing..
Print “ghi™; // error — missing “;”from preceding
Print
// statement
x = ((1+2) + 3; // error — unmatched set of parentheses

x = atoi(“abc”, 1); // error — atoi() does not take 2

arguments
if(x=4)
return 5; // error — should be return (5);
return (6); // ok
3

292 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1003

syntax error: Incorrect type '<decl_type>', expected type(s):
‘<decl_typel[,decl_type2] [,decl_typen]>' Incorrect type,
expected type(s): '<decl_typel[,decl_type2][,decl_typen]>'
A specific variable or type was expected and not found. Examples are variables of
one type being used in place of another, and incorrect variable types within function
arguments.
The following are examples of this error:

STRING_FUNCTION MyFunc(INTEGER x)

{
INTEGER vy;
x = getc(y); // error — y is not of type STRING
X = MyFunc(1); // error — x cannot accept the resulting
string
// returned from MyFunc()
}

Compiler Error 1004

syntax error: Unmatched symbol: '<identifier>'

Some language constructs are composed of more than one keyword. In these cases,
each keyword may reguire statements before and after it is used.

For example, the Switch statement uses the following keywords, Switch, Case, and
Default. If the keyword, Case, is encountered before or outside of switch statement,
this error will result.
The following are examples of this error:

FUNCTION MyFunc(INTEGER x)

{

} until (x >5); // error — “until” is not part of the
// “‘while” construct

else // error — no preceding “if’ statement

Language Reference Guide - DOC. 5797G SIMPL+® @ 293

Software Crestron SIMPL+®

Compiler Error 1005

syntax error: Unexpected symbol in compiler directive:
‘<identifier>'

Aninvalididentifier is following a compiler directive.

The following are examples of this error:

#DEFINE_CONSTANT MylIntConst 100 /7 ok

#DEFINE_CONSTANT “MylIntConst” 100 // error — MylntConst
should not

// be in quotes — this
// will be evaluated as
// a literal string

Compiler Error 1006

syntax error: Invalid #DEFINE_CONSTANT value:
‘<identifier>'

The value for a#DEFINE_CONSTANT compiler directive must be either aliteral
string or an integer value. Expressions, variables, functions and events cannot be
specified as the compiler directive’ svalue.

The following are examples of this error:

INTEGER Xx;
#DEFINE_CONSTANT MylIntConst 100 // ok
#DEFINE_CONSTANT MyStrConst “abc” // ok

#DEFINE_CONSTANT MyExprConst (1+2) // error — expressions

are

// not allowed
#DEFINE_CONSTANT MyVarConst X // error —
substitutions are

// not allowed
#DEFINE_CONSTANT MyExprConst (x+1) // error — macros
are not

// supported

#DEFINE_CONSTANT MyFuncConst myFunc // error
#DEFINE_CONSTANT MyFuncConst getc // error

294 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1007

syntax error: Missing array index: '<identifier>'

A variable declared as an array is being used within an expression without the array
index being specified. For two-dimensional arrays, both indices must be specified.
When passing entire arrays as function arguments, no index is needed.

The following are examples of this error:
FUNCTION MyFunc(Q)

{

INTEGER i, arr[10], arr2[10][20];

STRING str[100], str2[100][50];

i = arr[5]; // ok

i = arr2[5][10]; // ok

arr[5] = arr2[5][10]; // ok

arr2[5][10] = 5; // ok

i =arr; // error — no index specified

arr = 5; // error — no index specified

i = arr2[5]; // error — 2nd index not
specified

str2[5] = “a”; // ok

str[5] = “a”; // error — “str” is not an array
3

Language Reference Guide - DOC. 5797G SIMPL+® @ 295

Software

Crestron SIMPL+®

296 ® SIMPL+®

Compiler Error 1008

syntax error: Invalid integer argument or undefined variable:

‘<identifier>'

The construct being used requires either an integer value or variable passed as a

function argument.

e Make sure the variable has been declared

The following are examples of this error:

STRUCTURE MyStruct

{
INTEGER X;

STRING s[100];
b

MyStruct struct;

Function MyFunc()

{
INTEGER i;
STRING s[100];

for (1 =1 to 10) // ok
{
for (J=1to5) // error — “j” has not been declared
{
X =7; // error — should be struct.x = j;
}
for (s = “a” to “z”) // error — strings are not allowed
{
}
}

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Compiler Error 1009

syntax error: Missing structure member: ‘<identifier>'

Structure does not contain member: '<identifier>'

Variables contained within structures are required when using structures within an
expression or statement. When using structures, the ‘dot’ notation is required to
specify astructure' s variable.

The notation is asfollows: <structure_name>.<member_variable>
Structure arrays are as follows. <structure_name>[index].<member_variable>

The following are examples of this error:
STRUCTURE MyStruct

{

INTEGER Xx;

INTEGER x2[10];
ks
Function MyFunc(INTEGER x)
{

INTEGER 1i;

MyStruct struct;

MyStruct structArr[10];

I = struct.x; // ok

struct.x = 5; // ok

struct.x2[2] = 5; // ok

structArr[1]-x2[2] = 5; // ok

Call MyFunc(i); // ok

Call MyFunc(struct.x); // ok

Call MyFunc(structArr[1].-x); // ok

Call MyFunc(struct.x2[1]); // ok

i = struct; // error — structure variable not
specified

struct = i; // error — structure variable not
specified

Call MyFunc(struct); // error — structure variable not
specified

i = struct.z; // error — structure variable does
not exist

struct.z = 5; // error — structure variable does
not exist
3

Language Reference Guide - DOC. 5797G

SIMPL+® @ 297

Software Crestron SIMPL+®

Compiler Error 1010

syntax error: Symbol Name contains illegal character: ;'

The compiler directive, #SYMBOL_NAME, cannot contain a semicolon as part of
the symbol name.
The following are examples of this error:

#SYMBOL_NAME ““MySymbol” // ok

#SYMBOL_NAME “My Symbol”’ // ok

#SYMBOL_NAME ““MySymbol ;YourSymbol” // error

Compiler Error 1011

syntax error: Missing return value

The Return statement requires avalid value or expression when used inside of
functionsthat returnavalue INTEGER_FUNCTION, STRING_FUNCTION, etc.).
The Return statement is available for functions that don't return avalue
(FUNCTION), but do not alow valuesto be returned.

The following are examples of this error:

FUNCTION MyFunc(INTEGER X)

{
if (x=1)
return; // ok — MyFunc() does not return a value

return (5); // error — MyFunc is declared as FUNCTION and

// cannot return a value
3
INTEGER_FUNCTION AnotherFunc(INTEGER x)
{
if (x=1)
return; // error — MyFunc is declared as an

INTEGER_FUNCTION
// and must return a value
else if (x=2)
return (5); // ok

else if (x=3)
return ; // error — no value or expression is given

return (x); // ok

298 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1012

syntax error: Unterminated string constant

A literal string was used and was not contained within quotes. If a quotation
character is needed within aliteral string, a backslash should be placed before the
quotation character (i.e.: \). Thiswill indicate to the compiler that the quotation
character is not the terminating quote for the literal string.

The following are examples of this error:
FUNCTION MyFunc()

{
Print("%s"™, "abc\""); // ok

Print("%s", "abc\"); // error - \" is not a closing quote

}

Compiler Error 1013

syntax error: Source code does not evaluate to anything

A statement must perform an actionin order to bevalid. If no action is specified, the
statement will not be useful to the program.

The following are examples of this error:

FUNCTION MyFunc()
{
INTTEGER Xx;
STRING str[100];

X = 5; // ok
str = “abc™; // ok

X; // error
str; // error

Language Reference Guide - DOC. 5797G SIMPL+® @ 299

Software Crestron SIMPL+®

Fatal Errors (Compiler Errors 1100 to 1101)

Compiler Error 1100

fatal error: Statement outside of function scope

User-defined functions, Events, and compiler directives can only be defined at a
global level.

Scope refersto the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it residesin.

Variables can have either aglobal or local scope.

The following are examples of this error:
INTEGER 1i;
STRING str[100];

#DEFINE_CONSTANT myConst 1 // ok

#DEFINE_CONSTANT myConst 2; // error — semicolon is not
needed

i =5; // error — variables can only be used within a
// function or event
Call MyFunc(); // error — functions can only be called from

// another function or event

; // error — a semicolon is valid statement (which
/7 does nothing), and is not contained
// within a function or event

{ // error — braces only signify a group of

// statements within a function or

// construct (i.e.: if-else, while, etc)
INTEGER X;
INTEGER vy;

}

Print(“outside of everything”); // error — statement is
// not contained within
// a function or event

FUNCTION MyFunc() // ok

{
}

300 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Function Main(Q) // ok — Function Main gets called
automatically
// at the start of the program

{

i=05; // ok

str = *7; // ok

Call MyFunc(); // ok
}

Compiler Error 1101

fatal error: Abort - Error count exceeded <max_errors>

When compiling, if the error count istoo large, the compiler will terminate the
compile process prematurely. Thiscan not only be atremendoustime saver, but also
help reduce the aggravation and stress levels of the programmer.

Expression Error (Compiler Errors 1200 to 1201)

Compiler Error 1200

expression error: Invalid numeric expression: '<expression>'
Invalid string expression
Invalid expression: '<expression>'

Expressions can be cal culations, comparisons, or the validity of avalue from astring
or numeric variable or value. All expressions require that all variables and values
within the equation are of the same type. For example, you cannot add or compare
an integer and astring together. Theresult of acomparison (i.e.: abc = def) isalways
anumeric value and will be treated as a numeric expression.

The following are examples of this error:
INTEGER X, Vy;
STRING str[100];

INTEGER_FUNCTION myFunc(INTEGER 1)

{
x =1+ 2); // ok
if (x>y) // ok
{
if (i) // ok
{
if (str = “abc”) // ok
{
while (1) // ok
{

Language Reference Guide - DOC. 5797G SIMPL+® @ 301

Software Crestron SIMPL+®

X = X +y + myFunc(l); // ok
break;
}
¥
}
}
return (1);
3
INTEGER_FUNCTION AnotherFunc(INTEGER i)
{
x = (1 + str); // error — cannot add an integer
// and string
if (x> “abc”) // error — cannot compare an
integer
// and string
{
if (str) // error — cannot check the
validity
// of a string
{
if (str = MyFunc(1)) // error — cannot add strings
// and integers together
{
whille (str < “abc”) // ok
{
X =X+); // error — incomplete expression
break;
}
}
}
}
return (1);
3

302 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1201

expression error: Invalid \\x sequence
Invalid \\x sequence: '<expression>'

A hexadecimal sequence within aliteral string contained an invalid format.
Characters represented by a hexadecimal number must follow the format: \xXX,
where ‘\x’ signifiesthat a hexadecimal sequenceisto follow and XX isthe 2 digit
hexadecimal value.

The following are examples of thiserror:
Function myFunc()

{

STRING str[100];

MakeString(str, “Sending commands \xFF”); // ok

MakeString(str, “Sending commands \x41\x1A\xFF”); // ok

MakeString(str, “Sending cmd \x4”); // error — 2 digits
required

MakeString(str, “Sending cmd \x”); // error — hex code
expected

MakeString(str, “Sending cmd \xzZzZ”); // error — invalid
hex code

MakeString(str, “Sending cmd \xzZzZ”); // error — invalid
hex code
}

Language Reference Guide - DOC. 5797G SIMPL+® @ 303

Software Crestron SIMPL+®

Declaration Errors (Compiler Errors 1300 to 1312)

Compiler Error 1300

declaration error: Array size missing
Array size invalid

STRING, STRING_INPUT and BUFFER_INPUT variables require avalid length.
A lengthis specified by number enclosed within brackets. Arraysfor these datatypes
are specified by the first set of brackets containing the number of strings and the
second set of brackets containing the total length for each string. Two-dimensional
arrays are not alowed for these datatypes.

In afunction’s argument list, since all strings are passed by reference, no array size
isnecessary. A string array isindicated by an empty set of brackets. See example
below.

The following are examples of thiserror:
#DEFINE_CONSTANT ARR_SIZE 100

STRING str[100]; // ok — str has a length of 100
STRING_INPUT striIn[ARR_SIZE]; // ok — strin has a length of
100

BUFFER_INPUT bufIn[ARR_SIZE]; // ok — buflIn has a length of
100

STRING strArr[50][100]; // ok — 51 strings of length 100
STRING_INPUT striIn[50][100]; // ok - 51 strings of length
100

BUFFER_INPUT bufIn[50][100]; // ok — 51 strings of length
100

STRING_OUTPUT strOut; // ok — STRING_OUTPUTs do not

// require a length

STRING_OUTPUT strOutArr[10]; // ok — array of 10

STRING_OUTPUTs

STRING str2; // error — no length specified
STRING_INPUT strin; // error — no length specified
BUFFER_INPUT bufin; // error — no length specified
STRING_OUTPUT strOutArr[10][20]; // error — 2-D arrays not
supported
STRING str[x]; // error — variables are not
allowed
STRING str[myFunc(Q)]; // error — function calls are
// not allowed

FUNCTION myFunc(STRING sArg, // ok — strings are passed
by

STRING sArgArr[]) 7/ reference. sArg is a

// string and sArgArr is a
// string array

{

304 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

}
FUNCTION myFunc2(STRING sArg[10], // error — size is not
al lowed
STRING sArgArr[1L]) // error — 2-D strings not
// supported
{
}

Compiler Error 1301

declaration error: Invalid array index

Anindex is required when accessing any element of an array. Two dimensional
arrays require both indices of the array to be specified. Thisindex must be avalid
numeric expression.

All arrays are passed to functions by reference, so specifying anindex inthiscaseis
not allowed.

The following are examples of this error:
INTEGER XxArr[10], x2dArr[10][20]; 7/ ok
STRING str[100], strArr[50][100]; // ok

STRING_INPUT strin[100]; // ok

STRING_OUTPUT strOut; // ok

STRING str; // error — no length specified

STRING_INPUT strin; // error — no length specified

BUFFER_INPUT bufln; // error — no length specified

STRING_OUTPUT strOutArr[10][20]; // error — 2-D arrays not

supported

STRING str[x]; // error — variables are not

allowed

STRING str[myFunc(Q)]; // error — function calls are
// not allowed

INTEGER_FUNCTION MylIntFunc(INTEGER x[], INTEGER xArr[1[1)

{
XArr[1] = 5; // ok
XArr[1+2] = XArr[3+4]; // ok
XArr[1+xArr[2]] = XArr[xArr[3]]; // ok
XArr[MyIntFunc(xArr,x2dArr)] = 6; // ok
x2dArr[1][2] = 6; // ok

x2dArr[XArr[1]1[XxArr[2]] = x2dArr[xArr[5]][XArr[6]]; // ok

Call MyFunc(XArr, x2dArr); // ok
XArr = 5; // error — no index specified
XArr[] = O; // error — no index specified

XArr[str] = 6; // error - s is a STRING
XArr[5][6] = 7; // error — XArr is not a 2D array

Language Reference Guide - DOC. 5797G SIMPL+® @ 305

Software Crestron SIMPL+®

XArr = XArr; // error — cannot copy arrays
XArr = x2dArr[1]; // error — cannot copy arrays
x2dArr[1] = XArr; // error — cannot copy arrays

Call MyIntFunc(XArr[5], x2dArr); // error — cannot pass

index
// arrays are passed
// by reference
¥
FUNCTION MyStrFunc(STRING s, STRING s[]1) /7 ok
{
STRING sLocal[100];
str = “abc”’; // ok
strArr[5] = “def”’; // ok
strin = s; // ok
strout = s; // ok
sInArr[5] = “abc™; // ok
sOutArr[5] = “abc”; // ok
Call MyStrFunc(str, strArr); // ok
str[1] = “a”; // error — s is a string, not an array
sLocal = str[1]; // error — individual characters within
// a string can only be accessed
// with the function, Byte()
}

Compiler Error 1302

declaration error: Variable name, ‘<identifier>’, exceeds
maximum length of <max> characters

Variable names have a maximum length of 120 characters.

306 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Compiler Error 1303

declaration error: Declaration type not allowed within
structure: '<identifier>'
Structure cannot contain String Arrays or
Structure variables: '<identifier>'
Structure definitions not allowed within
other structures Local Structure
declarations are not allowed

Structure datatypes can only be defined globally. Variables of adefined structure
datatype may be declared both globally and locally and passed asfunction arguments.
INTEGER, LONG_INTEGER, SIGNED_INTEGER, SIGNED_LONG_INTEGER
and STRING arethe only SIMPL + datatypes allowed to be used as structure member
fields. INTEGER and LONG_INTEGER can include 1 and 2 dimensional arrays.
String arrays are not permitted.

The following are examples of this error:

STRUCTURE MyStruct // ok
{
INTEGER i, i1[10], 12[10][20]; // ok
SIGNED_INTEGER si, sil[10], si2[10][20]; // ok
LONG_INTEGER 1, 11[10], 12[10][20]; // ok
SIGNED_LONG_INTEGER sl, sl1[10], sl12[10][20]; 7/ ok
STRING s[100]; // ok
STRING sArr[10]; // error — string arrays are not allowed
// within structures
DIGITAL_INPUT di; // error — declaration type not allowed
DIGITAL_OUTPUT do; // error — declaration type not allowed
ANALOG_INPUT ai; // error — declaration type not allowed
ANALOG_INPUT ao; // error — declaration type not allowed
STRING_INPUT si; // error — declaration type not allowed
BUFFER_INPUT bi; // error — declaration type not allowed
STRING_OUTPUT so; // error — declaration type not allowed
STRUCTURE locStruct // error — declaration type not allowed
{
INTEGER Xx;
}
MyStruct ptr; // error — declaration type not allowed
3
FUNCTION MyFunc(Q)
{
STRUCTURE MyStruct // error — local structures are not
supported
{
INTEGER i, i1[10], 12[10][20]:
}
3

Language Reference Guide - DOC. 5797G

SIMPL+® @ 307

Software Crestron SIMPL+®

Compiler Error 1304

declaration error: Local variables must be declared at top of
function
All local variableswithin afunction block must be declared before any statementsare

encountered. Local variables are not allowed to be declared within a block of
statements such asinside an if-else or while loop.

The following are examples of this error:
FUNCTION MyFunc(INTEGER argl, STRING arg2) // ok

{
INTEGER 1i; // ok
STRING str[100]; // ok
Print(“Inside MyFunc!”);
INTEGER j; // error
if(Ci>1)
{
INTEGER K; // error — if-statement block cannot
contain local variables
}
}

Compiler Error 1305

declaration error: Local functions not supported

A function cannot be defined within another function definition. All function
definitions must be defined with a global scope inside the module.

Scope refersto the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it residesiin.

The following are examples of this error:

FUNCTION MyFunc() // ok — MyFunc is global
{
FUNCTION MyLocalFunc() // error — MyLocalFunc is local to
MyFunc
{
}
}

308 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Compiler Error 1306

declaration error: Declaration type can only be used globally:
‘<identifier>'

1/0 declarations must be defined globally; they cannot be declared aslocal variables

inside of afunction or library file.

The following are examples of this error:

INTEGER i;
STRING str[100];

DIGITAL_INPUT di;
DIGITAL_OUTPUT do;
ANALOG_INPUT ai;
ANALOG_OUTPUT ao;
STRING_INPUT si[100];
STRING_OUTPUT so;
BUFFER_INPUT bi[100];

FUNCTION MyFunc()

{
INTEGER 1i;
STRING str[100];

DIGITAL_INPUT di;
DIGITAL_OUTPUT do;
ANALOG_INPUT ai;
ANALOG_OUTPUT ao;
STRING_INPUT si[100];
STRING_OUTPUT so;
BUFFER_INPUT bi[100];

//
/7/

//
/7/
/7/
//
//
//
/7/

//
/7/

//
/7/
//
//
//
//
//

ok
ok

ok
ok
ok
ok
ok
ok
ok

ok — not an 1/0 declaration
ok — not an 1/0 declaration

error
error
error
error
error
error
error

Language Reference Guide - DOC. 5797G

SIMPL+® @ 309

Software

Crestron SIMPL+®

Compiler Error 1307

declaration error: Variables must be declared before array

declarations: '<identifier>"

I/O declarations must be declared in aspecific order. All arraysof an 1/O declaration
type (i.e.: DIGITAL_INPUT) must be declared after any variables of the same type.

The following are examples of this error:

DIGITAL_INPUT dil, di2; // ok

DIGITAL_INPUT di3; // ok
ANALOG_INPUT ail // ok
DIGITAL_OUTPUT do1l; // ok

ANALOG_INPUT aiArri[10]; /7 ok

DIGITAL_INPUT di4; // ok — no DIGITAL_INPUT array exists
yet
DIGITAL_INPUT diArrl[10]; // ok

DIGITAL_OUTPUT do2; // ok

ANALOG_INPUT aiArr2[20]; // ok — multiple arrays are allowed

DIGITAL_INPUT di5; // error — cannot define after diArrl

ANALOG_INPUT ai2; // error — cannot define after aiArr2

310 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1308

declaration error: Global variable declaration cannot be
declared in library file: '<identifier>"'
I/O Declaration cannot be declared in library
file: '<identifier>'

I/O declarations and global variables can only be defined in a SIMPL+ module (.usp
file). Librariesfiles (.ud files) arefilesthat only contain functions. Local functions
variables, function arguments and function that return values are permitted within
library files.

The following are examples of this error:

L1111777777777777777777777777777777///77777////777/7///777/7/7/
/177777

// MyLib.usl

INTEGER Xx; // error — x is global
STRING str[100]; // error — str is global
DIGITAL_INPUT di; // error — di is global

FUNCTION MyFunc()

{
INTEGER i, j; // ok — i and j are local
STRING str[100]; // ok — str is local

3

INTEGER_FUNCTION MylIntFunc(INTEGER x) // ok — x is local

{
INTEGER i, j; // ok — i and j are local
STRING str[100]; // ok — str is local
return (xX);

}

STRING_FUNCTION MyStFunc(STRING s) // ok — s is local

{
INTEGER i, j; // ok — 1 and j are local
STRING str[100]; // ok — str is local
return (str);

¥

Language Reference Guide - DOC. 5797G SIMPL+® @ 311

Software

Crestron SIMPL+®

Compiler Error 1309

declaration error: Compiler Directive must be set before all
global variable declarations
#DEFAULT_NONVOLATILE Compiler
Directive already set
#DEFAULT_VOLATILE Compiler
Directive already set

The compiler directives, #DEFAULT_VOLATILE and
#DEFAULT_NONVOLATILE, must be used before any global variables are
encountered within the SIMPL+ module. A module cannot contain more than one of
these directives.

The following are examples of this error:

L117177777777777777777777777777/77777///77777///7777///77/77/7/7//7/
/77777

// Example 1

#DEFAULT_VOLATILE // ok — compiler directive exists before
// all global variables

INTEGER Xx;
STRING str[100];
DIGITAL_INPUT di;

FUNCTION MyFunc()

{
}

L117177777777777777777777777777/77777//777777///7777///7777/7/7/77
/77777

// Example 2

INTEGER X;
STRING str[100];
DIGITAL_INPUT di;

#DEFAULT_VOLATILE // error — global variables have already
been

// declared within this module

FUNCTION MyFunc()

{
}

L117777777777777777777777777 77 7777777777777/ 77777/777/777/
/77777
// Example 3

#DEFAULT_VOLATILE // ok — compiler directive exists before

312 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

// all global variables
INTEGER x;
STRING str[100];
DIGITAL_INPUT di;

#DEFAULT_NONVOLATILE // error — #DEFAULT_VOLATILE has already
// been set

INTEGER y;

#DEFAULT_NONVOLATILE // error — #DEFAULT_VOLATILE has already
// been set

INTEGER z;

FUNCTION MyFunc(Q)

{
}

Compiler Error 1310

declaration error: Compiler directive cannot be in function

scope

Compiler directives cannot be used locally within functions. They can only be used
at aglobal level and the directive appliesto the entire SIMPL+ module.

Scope refersto the level at which an Event, user-defined function or statement
resides. Having aglobal scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it residesin.

The following are examples of this error:

#DEFINE_CONSTANT MyConst 100 // ok — used globally
#USER_LIBRARY “MyUserLib” // ok — used globally

FUNCTION MyFunc()

{
#DEFINE_CONSTANT AnotherConst 100 // error — constants

cannot

// be used locally
#USER_LIBRARY ‘“AnotherUserLib” // error — libraries
cannot
// be included locally
}

Language Reference Guide - DOC. 5797G SIMPL+® @ 313

Software

Crestron SIMPL+®

Compiler Error 1311

declaration error: Undefined Wait Label: '<identifier>'
Missing, invalid or already defined Wait
label: '<identifier>'

Wait Statements can be given alabel as an optional argument. Thislabel must be a
unique name and more than one wait statement cannot share the same label hame.
Thelabel name can then be used in the Pause, Cancel and Resumewait functions. All
labels must aready be declared in within await statement before any Pause, Cancel
or Resume wait statement can reference it.

The following are examples of this error:
FUNCTION MyFunc(Q)

{

CancelAllWaits(); // ok

CancelWait(MyWaitLabel); // error — MyWaitLabel has

// not been declared yet

Wait(500) // ok — Label is not required

{

}

Wait(500, MyWaitLabel) // ok — MyWaitLabel is unique

{

}

Wait(500, MyWaitLabel) // error — MyWaitLabel has
already

// been used
{
}

CancelWait(AnotherWaitLabel); // error — AnotherWaitLabel
has

// not been declared yet

Wait(500, AnotherWaitLabel) // ok — AnotherWaitLabel is

unique

{

}

CancelWait(AnotherWaitLabel); // ok

PauseWait(MyWaitLabel); // ok

ResumeWait(MyFunc); // error — MyFunc is not a
valid

// wait label

ResumeWait(someLabel); // error — somelLabel does

not exist

}

314 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1312

declaration error: Array boundary exceeded maximum size
of ‘num_bytes’ bytes
The maximum number of indices for an array is 65535.

The following are examples of this error:
FUNCTION MyFunc()

{
INTEGER int[100], intArr[100]1[100]; // ok
STRING str[100], strArr[100][100]; // ok
INTEGER int[100000]; // error
INTEGER intArr[100000][100]; // error
INTEGER intArr[100][100000]; // error
STRING str[100000]; // error
STRING strArr[100000][100]; // error
STRING strArr[100][100000]; // error

}

Compiler Error 1313

declaration error: Minimum array size invalid

The minimum array size cannot exceed the total size of the array. The minimum
array size must be between 1 and the total size of the array.

The following are examples of this error:
DIGITAL_INPUT diglnl[10]; // ok
DIGITAL_INPUT digIn2[10,5]; // ok — minimum size is 5

ANALOG_INPUT anlgIn3[10,0]; // error — minimum size must be

// greater than 0O
STRING_INPUT strin4[10,20]; // error — minimum size of 20
exceeds
// total array size of 10

Language Reference Guide - DOC. 5797G SIMPL+® @ 315

Software

Crestron SIMPL+®

Compiler Error 1314

declaration error: Minimum array size is not allowed for this
datatype: '<identifier>'
Minimum array size for this datatype
has already been declared: '<identifier>'

Minimum array sizes are only applicable to Input and Output datatypes (i.e.:
DIGITAL_INPUT, ANALOG_OUTPUT, STRING_INPUT, etc.). A variable of
another datatype was found trying to define a minimum array size. Only one array
for each Input or Output datatype is allowed to be declared with a minimum array
size.

The following are examples of this error:
DIGITAL_INPUT digIni[10]; // ok
DIGITAL_INPUT diglIn2[10,5]; // ok — minimum size is 5

DIGITAL_INPUT digIn3[20,10]; 7/ error — the DIGITAL_INPUT

array
// variable, digIn2, has already
// been declared with a minimum
// array size

ANALOG_INPUT anlglinl[10]; // ok
ANALOG_INPUT anlglIn2[10,5]; // ok — no other ANALOG_INPUT has

been
// declared with a minimum
array size
INTEGER x[10]; // ok
INTEGER y[10,5]; // error — INTEGER is not an Input or
// Output datatype

316 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Assignment Errors (Compiler Errors 1400 to 1402)

Compiler Error 1400

assignment error: lllegal Assignment

Assignments in SIMPL + require that the value being assigned to a variable must
equate to the same type as that variable. Integer variables can only be assigned
integer values and string variables can only be assigned a string value.

o |f acomplex assignment is being made, make sure that all parenthesis are matched.
In other words, all opening parenthesis must have a matching closing parenthesis.

o When comparing 2 strings (‘=’, ‘<’, ‘>=', etc.), the resulting value is an integer
e Input variables (DIGITAL_INPUT, ANALOG_INPUT, STRING_INPUT and

BUFFER_INPUT) cannot be assigned a value.

The following are examples of this error:
INTEGER X, Vy;
STRING str[100], str2[100];
DIGITAL_INPUT digln;
DIGITAL_OUTPUT digOut;
ANALOG_OUTPUT anlgOut;

FUNCTION MyFunc(Q)

{
str = *“abc™; // ok
str = *“abc” + “def”’; // ok
str = str2; // ok
X = 1; // ok
x = digOut; // ok
X = (str = str2); // ok
Xx =5 * (1 + (str > str2)); // ok
digOut = x; // ok
digOut = 5; // ok
digOut = anlgln; // ok — both are integer types
X = str; // error — str does not equate to
// an integer
// atoi() should be used
digln = 1; // error - digln is an input variable
str = 5; // error — 5 is an integer
// MakeString() should be used
str = str2 = “abc”; // error = str2 = “abc” is an
equality
// test, not an assignment
}

Language Reference Guide - DOC. 5797G

SIMPL+® @ 317

Software Crestron SIMPL+®

Compiler Error 1401

assignment error: Variable cannot be used for assignment:
‘<identifier>'

Function arguments that have been declared as ReadOnlyByRef can only have their
values read; values cannot be assigned to them.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x, ReadOnlyByRef INTEGER y)

{
=5; // ok
=vy; // ok — the value of y can be read
y = 6; // error — y is read-only
¥

Compiler Error 1402

assignment error: Variable can only be used for assignment:
'<identifier>'

STRING_OUTPUT variables can only have their valuesread. Once assigned a

value, that value isimmediately acted upon by the control system, and the value is
assumed to be unknown thereafter.

The following are examples of this error:
STRING_OUTPUT sOut;
STRING str[100];

FUNCTION MyFunc()

{
str = “abc”; // ok
sOut = str; // ok — sOut can be assigned a value
sOut = “abc™; // ok — sOut can be assigned a value
str = sOut; // error — the value of sOut is lost
Print(“str = %s”, str); // ok — STRINGs can be read and
written
Print(“sOut = %s”, sOut); // error — the value of sOut is
unknown
}

318 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Function Argument Errors (Compiler Errors 1500 to 1508)

Compiler Error 1500

function argument error: Argument <arg_num> cannot be
passed by reference

A variable was being passed that can either only have avalue assigned to it, or it's
value be copied into another variable or used within an expression. An example of
thisistrying to passa STRING_INPUT variable as a function argument; the
STRING_INPUT must first be copied into a STRING variable and then passed.

Passby Reference— The function will act directly on the variable that was passed as
the argument. Any changes to the variable within the called function the will be
reflected within the calling function.

Pass by Value — The function creates alocal copy of the source variable. Any
changesto thislocal copy are not reflected in the source variable that was originally
passed to the function. The source variable will till retainsits origina value from
before the function was called..
The following are examples of this error:

INTEGER 1;

STRING str[100];

STRING_INPUT strin[100];

STRING_OUTPUT strOut;

DIGITAL_INPUT di;

FUNCTION MyFunc(STRING s)

{
str = strin;
Call MyFunc(str); // ok — the previous statement copied
// “strin’ into “str’
Call MyFunc(“abc”); // ok
Call MyFunc(strin); // error — strin is a STRING_INPUT
and
// cannot be passed by reference
Call MyFunc(strOut); // error — strin is a STRING_OUTPUT
and
// cannot be passed by reference
}
FUNCTION MyFunc2(ByRef STRING s) // error — STRINGs cannot be
// passed by reference
{
Call MyFunc2(str); // error — STRINGs cannot be
// passed by reference
}

FUNCTION AnotherFunc(ByRef INTEGER x)
{

Language Reference Guide - DOC. 5797G SIMPL+® @ 319

Software

Crestron SIMPL+®

Call AnotherFunc(1); // ok
Call AnotherFunc(di); // error — di is a DIGITAL_INPUT and

// cannot be passed
// by reference

}

Compiler Error 1501

function argument error: Argument <arg_num> cannot be

passed by value

In SIMPL +, arrays can only be passed by reference. The keyword, ByVal, cannot be
used within afunction’s argument list in conjunction with arrays. A copy of an
individual element within an array must first be copied intoan INTEGER or STRING
variable and then that variable can be passed.

Pass by Reference— Thefunction will act directly on the variable that was passed as
the argument. Any changes to the variable within the called function the will be
reflected within the calling function.

Pass by Value — The function creates alocal copy of the source variable. Any
changesto thislocal copy are not reflected in the source variabl e that was originally
passed to the function. The source variable will till retainsit’s original value from
before the function was called.
The following are examples of this error:

FUNCTION MyFunc(ByVal INTEGER intArr[]1) // error — arrays

cannot be

// passed by value

{
}

FUNCTION MyFunc(ByVal STRING strArr[]) // error — arrays
cannot be
// passed by value

{
}

FUNCTION MyFunc(ByVal INTEGER intArr[]1[]) // error — arrays
cannot be
// passed by value

{
}

FUNCTION MyFunc(ByVal STRING strArr[1[]) /7 error — arrays
cannot be

// passed by value
{
}

320 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Compiler Error 1502

function argument error: Function contains incomplete

number of arguments
Function call contains an
unmatched number of
arguments

When calling a functions that contain parameter lists, the number of arguments
passed to the function must match the number of parametersdefined for that function.

The following are examples of this error:

FUNCTION MyFunc(INTEGER x, STRING str)

{
Call MyFunc(1, “abc”); // ok
Call MyFunc(Q); // error — 2 arguments are expected
Call MyFunc(1); // error — argument 2 is missing
}

Compiler Error 1503

function argument error: Input or Output signal expected:

‘<identifier>'

The expected identifier must be of an Input or Output signal datatype (i.e.:
DIGITAL_INPUT, ANALOG_OUTPUT, STRING_INPUT, etc.).

The following are examples of thiserror:

DIGITAL_INPUT digln, diglnArr[10];
DIGITAL_INPUT digln;

ANALOG_INPUT anlglin;
ANALOG_OUTPUT anlgOut;
STRING_INPUT strin[100];
STRING_OUTPUT strout;

BUFFER_INPUT buffIn[100];

INTEGER i;
STRING str[100];

FUNCTION MyFunc()

{
i = IsSignalDefined(digln); // ok
i = IsSignalDefined(diglnArr[5]); // ok
i = IsSignalDefined(digOut); // ok
i = IsSignalDefined(anlgln); // ok
i = IsSignalDefined(anlgOut); // ok
i = IsSignalDefined(strin); // ok
i = IsSignalDefined(strOut); // ok
i = IsSignalDefined(buffin); // ok
digOut = IsSignalDefined(i); // error — “i” is not

an Input

Language Reference Guide - DOC. 5797G SIMPL+® @ 321

Software Crestron SIMPL+®

// or Output signal
i = IsSignalDefined(str); // error — “i” is not
an Input
// or Output signal
digOut = IsSignalDefined(5); // error — “5” is not
an Input
// or Output signal
}

Compiler Error 1504

function argument error: Incomplete number of format string
arguments
Format string contains an
unmatched number of arguments
Argument <arg_num> is missing
or invalid.
Format Specifier expected
Argument <arg_num> is missing
or invalid. <decl_type> expected

Format lists contain format specifiers that tell the compiler to replace a given
specifier with thevalue or result given in the argument list that follows. A format list
isanalogousto afunction parameter list in that the format specifier tellsthe compiler
what type of argument to expect. For each format specifier, their must be a
corresponding value or result in the argument list that follows. Thisvalue or result
must also be of the same datatype.

Format strings contain specifications that determine the output format for the
arguments. The format argument consists of ordinary characters, escape sequences,
and (if argumentsfollow format) format specifications Format Specificationsaways
begin with a percent sign (%) and are read left to right. When the first format
specification is encountered (if any), it converts the value of the first argument after
format and outputsit accordingly. The second format specification causes the second
argument to be converted and output, and so on.
The following are examples of thiserror:
FUNCTION MyFunc(Q)
{
INTEGER x, intArr[100];
STRING str[100], strArr[100][100];

Print(“Hello World”); // ok

Print(“My name is %s. My age is %d”, “David”, 33); /
/ ok

Print(“My name is %s. My age is %d”, str, X); // ok

MakeString(str, “Hello World”); // ok
MakeString(str, “My name is %s. My age is %d”, str, X);
// ok

Print(“My name is %s. My age is %d”, “David”); //
error —
// %d format specifier does not have a

322 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

// corresponding value

Print(“My name is %s. My age is %d”, 33, “David”); //

error -
// both format specifiers contain
corresponding
// values of different datatypes
SetArray(strArr, 1); // ok
SetArray(strArr, *“abc”); // ok
SetArray(intArr, 0); // ok
SetArray(“abc”, 1); // error — “abc” is not an array
SetArray(1, “abc”); // error — 1 is not an array
}

Compiler Error 1505

function argument error: Format string contains invalid
format specifier

Aninvalid format specifier was used within aformat string.

Format strings contain specifications that determine the output format for the
arguments. The format argument consists of ordinary characters, escape sequences,
and (if argumentsfollow format) format specifications Format Specificationsaways
begin with a percent sign (%) and are read left to right. When the first format
specification is encountered (if any), it convertsthe value of the first argument after
format and outputsit accordingly. The second format specification causes the second
argument to be converted and output, and so on.
The following are examples of thiserror:

FUNCTION MyFunc()

{

Print(“Hello World”); // ok

Print(“My name is %s. My age is %d”, “David”, 33); /
/ ok

Print(“My name is %xs”, “David”); // error - %xs is an
invalid

// format specifier

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 323

Software Crestron SIMPL+®

Compiler Error 1506

function argument error: 0, 1 or 2 constant expected for
argument 1

The function, MakeString, can contain a0, 1, 2 asthe first argument. Thistellsthe
control system to output the resulting string to a specific destination. Aninteger
value other than 0, 1 or 2 was encountered as the first argument of MakeString().

The different destinations are as follows:
0: Computer Port, same as PRINT.
1: CPU (same functionality as the SendPacketToCPU function)
2: Cresnet Network (same functionality as the SendCresnetPacket function).

The following are examples of this error:
FUNCTION MyFunc(INTEGER x, STRING str)

{
Call MyFunc(1, “abc”); // ok
Call MyFuncQ); // error — 2 arguments are expected
Call MyFunc(1); // error — argument 2 is missing
}

Compiler Error 1507

function argument error: Argument <arg_num>: Missing or
invalid array

An integer or string variable array was expected and was not encountered.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x[], STRING str[])

{

INTEGER 1i;

STRING strArr[100][100];

SetArray(x, 1); // ok

Call MyFunc(x, StrArr); // ok

SetArray(i, 1); // error — i1 is not an array

Call MyFunc(1, “abc”); // error — 1 is not an array
}

324 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1508

function argument error: 1/0O variable cannot be passed to
read file functions: '<identifier>'

Read file functions (Readlnteger, ReadString, etc.) cannot contain Input or Output
variables for the function’s resulting read buffer.

The following are examples of this error:
DIGITAL_OUTPUT digOut;
STRING_OUTPUT strOut;

FUNCTION MyFunc(SIGNED_INTEGER nHandle)

{
STRING str[100];
INTEGER Xx;
Readlnteger(nHandle, x); // ok
ReadString(nHandle, str); // ok
Readlnteger(nHandle, digOut); // error
ReadString(nHandle, strOut); // error
}

Language Reference Guide - DOC. 5797G SIMPL+® @ 325

Software Crestron SIMPL+®

Construct Errors (Compiler Errors 1600 to 1608)

Compiler Error 1600

construct error: 'Function Main' cannot contain function
parameters
'Function Main' cannot return a value
Function Main isthe starting point of a SIMPL+ program. It isautomatically called
once when the system startup or isreset. Since thisfunction isinvoked by a method

outside of the SIMPL+ module, no arguments can beincluded in it’s argument list
and no value can be returned from it.

The following are examples of this error:

Function Main(Q) // ok
{
3
INTEGER_FUNCTION Main() // error — Main() cannot
return
// a value

{
3
Function Main(INTEGER cmdLineArg) // error — Main() cannot
contain

// a parameter list
{
3

Compiler Error 1601

construct error: DuplicateCASE Statement
Constant expected: '<identifier>'

Unlikethe Switch Statement the CSwitch statement’ s case statements must consi st of
unique values. Expressions are not permitted within the case statements. Instead,
each case statement must contain a unique integer value for the CSwitch’'s
comparison.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x)

{
STRING str[100];

CSwitch(x)

{
case (1): // ok — 1 has not been used yet
{
}
case (2): // ok — 2 has not been used yet

326 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

OF 7/

G+6): 1/

): //

(“abc™):

(str): //

}
}

Compiler Error 1602

error

error

error

error

error

2 has been previously used

expressions are not allowed

variables are not allowed

strings are not allowed

strings are not allowed

construct error: Switch statement contains 'default' without
‘case’' labels

The Switch and CSwitch constructs must contain ‘ case’ statements if the ‘ default’
statement isto be used. The ‘default’ statement is optional.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x)

{
Switch (x)

{

case (1): // ok

{
}

default: // ok

{
}
}

Cswitch (x)

{

case (1): // ok

{
}

default: // ok

Language Reference Guide - DOC. 5797G

SIMPL+® @ 327

Software

Crestron SIMPL+®

{
}
}

Switch (x)
{

default: // error — no Case statement in Switch

{
}
}

CSwitch (x)
{

default: // error — no Case statement in Switch

{
}
}
}

Compiler Error 1603

construct error: #CATEGORY does not exist:
'<categorgy_number>'.
Defaulting to Category Type, ""32""
(Miscellaneous).
The category number for this compiler directive was not found or was not avalid

category number within the Symbol Tree Category List within SIMPL windows. The
category number must be enclosed in quotation marks.

Selecting Edit | Insert Category from the SIMPL+ menu will display thelist of valid
category numbers and give the option for this compiler directive to be automatically
inserted into the SIMPL+ module.

The following are examples of this error:

#CATEGORY “6” // ok — “6” is the category number
// for Lighting
#CATEGORY “Lighting” // error — the category number,
g
// should be used instead of
// the category symbol name
#CATEGORY 6 // error — the category number should
// be enclosed in quotation marks
#CATEGORY 99 // error — invalid category number

#DEFINE_CONSTANT MyCategory 6
#CATEGORY MyCategory // error — cannot substitute
category

// number with #DEFINE_CONSTANTs

328 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Compiler Error 1604

EVENT /7 ok
{

}

EVENT // error — EVENT is already defined

{
}

Compiler Error 1605

construct error: 'EVENT' already has a body

The EVENT statement can only be defined once per SIMPL+ module. A previously
defined definition of EVENT was already encountered by the compiler.

The following are examples of this error:

event

EVENT
{

TerminateEvent;

}

PUSH digln
{

TerminateEvent;

}

RELEASE digln
{

TerminateEvent;

}

CHANGE digln
{

TerminateEvent;

}

FUNCTION MyFunc()

{
while (1)

The following are examples of this error:
DIGITAL_INPUT digln;

// ok

// ok

// ok

// ok

construct error: Function can only be contained within an

The function, TerminateEvent, can only be used within a PUSH, CHANGE,
RELEASE or EVENT statement. The compiler encountered this function outside of
one of these event functions.

Language Reference Guide - DOC. 5797G

SIMPL+® @ 329

Software

Crestron SIMPL+®

{

TerminateEvent; // error — TerminateEvent is not within

}
}

Compiler Error 1606

// an event function

construct error: Statement must be contained within a loop

Sstatement

The ‘break’ statement can only be used with aloop construct. Valid loop constructs
are While loops, Do-While loops and For loops. The compiler encountered this
function outside of one of these event functions.

The following are examples of this error:

FUNCTION MyFunc(Q)

{
INTEGER I;

for (i =11t 10)

{

break; // ok

}

while (1)
{

break; // ok

}

do
{

break; // ok

} until (1);

if (1)
{

break; // error — break cannot exist within an “if”

statement

}
}

EVENT

break; // error — TerminateEvent should be used instead

330 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Error 1607

construct error: GetLastModifiedArraylndex may return an
ambiguous signal index

If an event function (EVENT, PUSH, CHANGE, RELEASE) is acting on more than
oneinput array signal, the specific array will not be able to be determined based on
the index returned from GetLastModifiedArraylndex(). In order to use
GetLastModifiedArraylndex() for multiple input signal arrays, a separate event
function will have to be defined for each array.

The following are examples of this error:
DIGITAL_INPUT digIn[10];
ANALOG_INPUT anlglIn[10];

PUSH digln

{
INTEGER i;

i = CetlLastModfiedArraylndex(); // ok — index from digin
}

PUSH anlgln

{
INTEGER i;

i = GetLastModfiedArraylndex(); // ok — index from anlgln
}

CHANGE digln, anlgln

{
INTEGER i;

i = GetLastModfiedArraylndex(); // error — ambiguous result

}

Compiler Error 1608

construct error: Missing library file name

A filename was not found following the compiler directive, #USER _LIBRARY or
#CRESTRON_LIBRARY. Thisfilename must be enclosed within quotation marks.
Thefile extension (.usl or .csl) should NOT be used when specifying the filename.

The following are examples of this error:
#USER_LIBRARY “MyUserLib” // ok
#CRESTRON_LIBRARY “EvntSched” // ok

#USER_LIBRARY MyUserLib // error — missing quotation marks
#USER_LIBRARY MyUserLib.usl // error — missing quotation
marks and

// extension is not allowed

Language Reference Guide - DOC. 5797G SIMPL+® @ 331

Software Crestron SIMPL+®

File Errors (Compiler Errors 1700 to 1702)

Compiler Error 1700

file error: End of file reached

The compiler reached the end of file before all functions or statements were
compl eted.

o Make sure al functions have matching opening and closing braces.
o Make sureall statement expressions have matching opening and closing parenthesis.

Compiler Error 1701

file error: Error writing header file: '<file_name>'

Error writing file: '<file_name>'

Error writing library file

Error writing output file

Error creating compiler makefile: '<file_name>"'
Error opening compiler source makefile:

‘<file_name>'
Error opening source file: '<file_name>"'

The specified file could not be opened or created.
o Make surethereis sufficient disk space for the file to be written.

e Ifincluding aUser or Crestron Library (#USER_LIBRARY or
#CRESTRON_LIBRARY), make sure the library file nameisvalid, spelled
properly and does not contain the file extension (.usl or .cdl).

e Make surethelatest version of the Crestron Database isinstalled.

o Makesurethe path for the Crestron Database and User SIMPL + files have been
specified within SIMPL Windows.

e Make surethefile does not exist with a Read-Only attribute.

e Make sure another application (i.e.: another instance of SIMPL+) is not
currently running with thisfile open.

Compiler Error 1702

file error: Error extracting library, '<file_name>', from
archive: '<archive_file>'

The specified file was not found within the Crestron Library archive.

o Make surethelibrary file nameisvalid, spelled properly and does not contain
the file extension (.cdl).

e Make surethelatest version of the Crestron Database isinstalled.

o Make surethe path for the Crestron Database has been specified within SIMPL
Windows.

332 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Warnings (Compiler Errors 1800 to 1803)

Compiler Warning 1800

compiler warning: 'Return’ statement will only terminate
current Wait statement's function scope

A ‘Return’ statement within aWait Statement’ s block of code will cause the Wait
Statement to terminate. It will NOT terminate the current function that the Wait
Statement resides within.

Wait Statements are similar to event functions (EVENT, PUSH, CHANGE,
RELEASE) inthat they executein their own program thread. The control system can
have many threads executing at the sametime; each thread runs concurrent with one
another.

The following are examples of this warning:
FUNCTION MyFunc(INTEGER x)

{
if(x=1)
{
Wait(500)
{
return; // warning - this will terminate the
// Wait Statement. It will NOT
// terminate MyFunc(Q)
}
}
else if (x==2)
return; // this will terminate MyFunc(Q)
X =x+ 1;
¥

Compiler Warning 1801

compiler warning: 'TerminateEvent' statement will only
terminate current Wait statement's
function scope

When Wait Statements are embedded within one another, the TerminateEvent, will
only terminate the corresponding Wait Statement of the same scope. It will NOT
terminate any Wait Statements that are of a different scope.

Wait Statements are similar to event functions (EVENT, PUSH, CHANGE,

REL EASE) inthat they executein their own program thread. The control system can
have many threads executing at the ssmetime; each thread runs concurrent with one
another.

Language Reference Guide - DOC. 5797G SIMPL+® @ 333

Software Crestron SIMPL+®

Scope refersto the level at which an Event, user-defined function or statement
resides. Having agloba scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it residesin.

The following are examples of this warning:
FUNCTION MyFunc(INTEGER x)

{
wait(500, MyLabell)
{
Wait(300, MyLabel2)
{
TerminateEvent; // warning — this will only terminate
// the Wait Statent, MylLabel2.
// MyLabell will continue to
// execute
}
}
}

Compiler Warning 1802

compiler warning: #CATEGORY_NAME defined more than
once.
Using: #CATEGORY_NAME "<number>"

Only one category nameis alowed for each SIMPL+ module. If the compiler
directive, #CATEGORY, is found more than once within a SIMPL+ module, the
compiler will use the category number from the last occurrence of the compiler
directive.

The following are examples of this warning:
#CATEGORY “1”
#CATEGORY 27

FUNCTION MyFunc()

{
}

#CATEGORY “3” // this is the resulting category number
// for this SIMPL+ module

FUNCTION AnotherFunc()

{
}

334 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Compiler Warning 1803

compiler warning: Possible data loss: LONG_INTEGER to
INTEGER assignment

A LONG_INTEGER result was assigned to an INTEGER variable or passed to a
function for an INTEGER parameter. The 32-bit LONG_INTEGER will be
truncated to 16-bit value and assigned to the integer, resulting in aloss of data.

o Make sure al the datatypes within an expression are of the same datatype.

e Make sure the parameter of afunction being called is of the same datatype as
the argument being passed in.

e Make sure the return value of afunction matches the destination’ s datatype.

The following are examples of thiswarning:
LONG_FUNCTION MyFunc(INTEGER x)

{

INTEGER 1;
LONG_INTECGER j;

// ok — both sides of the assigment are of
// the same datatype

J=1i // ok — no loss of data

=1 // ok — both sides of the assigment are of
// the same datatype

i=]; // warning — LONG_INTEGER being assignhed to
// an INTEGER

Call MyFunc // ok

Ci);
Call MyFunc(j); // warning
i = MyFunc(5); // warning — the integer, i, is being
assigned a
// LONG_INTEGER value

}

Language Reference Guide - DOC. 5797G SIMPL+® @ 335

Software Crestron SIMPL+®

SIMPL+ Revisions

For the latest revisions to SIMPL Windows, refer to the rel ease notesinstalled with
the program. This can be accessed in the Start Menu, under Programs | Crestron |
SIMPL Windows

336 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Obsolete Functions

System Interfacing - Cresnet and CPU

GetCIP

Name:
GetCIP

Syntax:

INTEGER GetCIP(INTEGER CIPID, INTEGER JOIN_NUMBER,
INTEGER TYPE);

Description:

Retrievesthe current state of thejoin number on aparticular CIPID (referredto as|IP
ID in SIMPL+). Note that the device must be defined in SIMPL Windows and the
join number to use must have asignal tied to it for this function to work.

0 NOTE: CIPisdefined as Cresnet (over) Internet Protocol.

Parameters:
CIPID isan INTEGER containing the ID of the CIP deviceto query.

JOIN_NUMBER isan INTEGER containing the Join number to get the status. For
touchpanels, the join number isidentical to the press/feedback number. For other
devices, contact Crestron customer service.

TYPE isone of several predefined constants:

din: Digital inputs from device (symbol output list)
an: Analog inputs from device (symbol output list)
dout: Digital outputsto device (symbol input list)
aout: Anaog outputs to device (symbol input list)

ﬂ NOTE: Accessto serial signalsis not supported.

Language Reference Guide - DOC. 5797G SIMPL+® @ 337

Software

Crestron SIMPL+®

Return Value:

An Integer. For Digital values, anon-zero value indicates alogic high and a0 value
indicates alogic low. For analog values, a 16-bit number is returned corresponding
to the state of the analog join.

Example:

Assuming arelay card hasbeen defined in Slot 1 and Relay A2 hasasignal nametied
toit, and a CEN-10 has been defined at CIP ID 03 and cueil hasasignal tied to it,
this SIMPL+ statement will connect the two:

SetSlot(l,2,dout) = GetCIP(0x03,18,din);

NOTE: In the above example statement, the join number representing cueil on the
CEN-IOis18.

NOTE: Thisis not a permanent connection; it will only set the state when this
statement is executed

Version:
SIMPL+ Version 2.00 only. Thisfunction is not availablein Versions 1.00 or 3.00.

Control System:

X-Generation only

GetCresnet

Name:
GetCresnet

Syntax:

INTEGER GetCresnet(INTEGER CRESNET_ID, INTEGER
JOIN_NUMBER, INTEGER TYPE);

Description:

Retrieves the current state of the join number on a particular Cresnet Network 1D.
Note that the device must be defined in SIMPL Windows and the join number to use
must have asignal tied to it for this function to work.

Parameters:

CRESNET _ID isan INTEGER containing the ID of the Cresnet Network device to
query.
JOIN_NUMBER is an INTEGER containing the Join number to get the status. For

touchpanels, the join number is identical to the press/feedback number. For other
devices, contact Crestron customer service.

338 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

TYPE isone of severa predefined constants:

din: Digital inputs from device (symbol output list)
ain; Analog inputs from device (symbol output list)
dout: Digital outputsto device (symbol input list)
aout: Analog outputs to device (symbol input list)

ﬂ NOTE: Accessto seria signalsis not supported.

Return Value:

An Integer. For Digital values, anon-zero value indicates alogic high and a0 value
indicates alogic low. For analog values, a 16-bit number is returned corresponding
to the state of the analog join.

Example:

Assuming arelay card hasbeen defined in Slot 1 and Relay A2 hasasignal nametied
to it, and atouchpanel has been defined at Cresnet ID 07, and press 42 has asignal
name tied to it, this SIMPL + statement will connect the two:

SetSlot(1,2,dout) = GetCresnet(0x07,42,din);

NOTE: Thisisnot a permanent connection; it will only set the state when this
statement is executed.

Version:
SIMPL+ Version 2.00 only. Thisfunction is not availablein Versions 1.00 or 3.00.

Control System:

X-Generation only

GetSlot

Name:
GetSlot

Syntax:

INTEGER GetSIot(INTEGER SLOT_NUMBER, INTEGER
JOIN_NUMBER, INTEGER TYPE);

Description:

Retrievesthe current state of thejoin number on aparticular card. Notethat the device
must be defined in SIMPL Windows and the join number to use must have asignal
tied to it for this function to work.

Language Reference Guide - DOC. 5797G SIMPL+® @ 339

Software Crestron SIMPL+®

Parameters:
SLOT_NUMBER isan INTEGER containing the slot number of the card to query.
JOIN_NUMBER is an INTEGER containing the Join number to get the status.
TYPE isone of several predefined constants:
din: Digital inputs from device (symbol output list)
ain: Analog inputs from device (symbol output list)
dout: Digital outputsto device (symbol input list)
aout: Analog outputs to device (symbol input list)

9 NOTE: Accessto seria signalsis not supported.

Return Value:

An Integer. For Digital values, anon-zero value indicates alogic high and a0 value
indicates alogic low. For analog values, a 16-bit number is returned corresponding
to the state of the analog join.

Example:

Assuming arelay card hasbeen defined in Slot 1 and Relay A2 hasasignal nametied
toit, and aCNXI10-16 has been defined in Slot 2 and cueil hasasignal tied to it, this
SIMPL+ statement will connect the two:

SetSlot(1,2,dout) = GetSlot(2,1,din);

NOTE: Thisisnot a permanent connection; it will only set the state when this
statement is executed.

Version:
SIMPL+ Version 2.00 only. Thisfunction is not availablein Versions 1.00 or 3.00.

Control System:

X-Generation only

IsSignalDefined

Name:
IsSignal Defined

Syntax:
INTEGER IsSignalDefined <input/output signal>;

340 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

Description:

Retrieves the current SIMPL signal number associated with a particular input or
output. Thisis generally used to determine if a particular input or output on agateis
being used, and generally used with arrayed inputs or outputs. This can be used to
build agate of apredetermined maximum size, and allow the user to add and subtract
signalson theinput or output of the gate (i.e., the program would be written to iterate
through aDIGITAL_INPUT array until IsSignal Defined returns a0).

Parameters:

Legal output and input signal types are ANALOG_INPUT, ANALOG_OUTPUT,
BUFFER_INPUT, DIGITAL_INPUT, DIGITAL_OUTPUT, STRING_INPUT,
STRING_OUTPUT.

Return Value:

Theparticular input or output istied to an integer giving the signal number. If asignal
has been tied to that input or output of the gate, a non-zero value will be returned. If
the signal istied to 0 on the SIMPL gate or the signal is not defined, then O will be
returned. If the signal istied to 1, then 1 isreturned.

Example:

DIGITAL_INPUT INS[20];
INTEGER Numlnputs;

FUNCTION MAINQ)

{
FOR(Numlnputs = 20 to 1 Step -1)

IF(IsSignalDefined(INS[Numlnputs]))
Break;

}

Thisexample computes how many inputs are used on the gate. It should be noted that
it isuseful to work backwards from the end of the gate. If the user tied five signals, a
0, and then five more signals, this would yield the correct result that the 11th input
was the last one used.

Version:
SIMPL+ Version 2.00

SendCresnetPacket

Name:
SendCresnetPacket

Syntax:
SendCresnetPacket(STRING PACKET);

Language Reference Guide - DOC. 5797G SIMPL+® @ 341

Software

Crestron SIMPL+®

Description:
Sends the string specified by PACKET onto the Cresnet network. It duplicates the
function of the SIMPL Windows symbol “Network Transmission (Speedkey:
NTX).” Thisfunction is not used in general programming.

Parameters:

PACKET isastring containing the command to put on the Cresnet network.

Return Value:

None.

Example:

SendCresnetPacket (*\xFF\x03\x02"") ;
This examplewill send a broadcast message to all touchpanels causing them to enter
sleep mode. The preferable way to do thisis use the SLEEP input of the
BROADCAST symbol in SIMPL Windows.
Version:
SIMPL+ Version 2.00

SendPacketToCPU

Name:
SendPacketToCPU

Syntax:
SendPacketToCPU(STRING PACKET);

Description:

Sendsthe string specified by PACKET to the Cresnet CPU. Thisisnormally used for
sending ESC style commands to the CPU for control. This function duplicates the
functionality of the SIMPL Windows symbol “ Send Message to CPU (Speedkey:
TMSG).” Thisfunction isnot used in general programming.

Parameters:
PACKET isastring containing the command to send to the CPU.

Return Value:

None.

342 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

1

Example:

SendPacketToCPU(*“\x1BDFF\r’");

This example will turn the Super Debugger on, which shows al network transitions
on the console port of the control system. Thiscommand would normally betypedin
manually through the Crestron Viewport, sinceit is for debugging only.

Version:
SIMPL+ Version 2.00

SetCIP

Name:
SetCIP

Syntax:

SetCIP(INTEGER CIPID, INTEGER JOIN_NUMBER, INTEGER
TYPE);

Description:

Setsthe state of the join number on aparticular CIP I1D. Note that the device must be
defined in SIMPL Windows and the join number to use must have asignal tied to it
for this function to work.

Parameters:

CIPID isan INTEGER containing the ID of the CIP device to set the join number.
JOIN_NUMBER isan INTEGER containing the Join number to set. TY PE is one of
several predefined constants:

din: Digital inputs from device (symbol output list)
ain: Analog inputs from device (symbol output list)
dout: Digital outputsto device (symbol input list)
aout: Analog outputs to device (symbol input list)

Return Value:

None.

Example:

Assuming a CEN-1O has been defined at CIP ID 03 and Relay1 has asignal name
tied to it, and a touchpanel has been defined at Cresnet ID 07, and press 42 has a
signal nametied to it, this SIMPL + statement will connect the two:

SetCIP(0x03,1,dout) = GetCresnet(0x07,42,din);

NOTE: Thisis not a permanent connection; it will only set the state when this
statement is executed.

Language Reference Guide - DOC. 5797G SIMPL+® @ 343

Software Crestron SIMPL+®

Version:
SIMPL+ Version 2.00 only. Thisfunction is not availablein Versions 1.00 or 3.00.

Control System:

X-Generation only

SetCresnet

Name:
SetCresnet

Syntax:

SetCresnet(INTEGER CRESNET_ID, INTEGER JOIN_NUMBER,
INTEGER TYPE);

Description:

Sets the state of the join number on a particular Cresnet Network 1D. Note that the
device must be defined in SIMPL Windows and the join number to use must have a
signal tied to it for this function to work.

Parameters:

CRESNET _ID isan INTEGER containing the ID of the Cresnet Network device to
set thejoin number. JOIN_NUMBER isan INTEGER containing the Join number to
set. TYPE is one of several predefined constants:

din: Digital inputs from device (symbol output list)
ain: Analog inputs from device (symbol output list)
dout: Digital outputsto device (symbol input list)
aout: Analog outputs to device (symbol input list)

Return Value:

None.

Example:

Assuming atouchpanel has been defined at Cresnet ID 07, and press 42 and feedback
69 have signal namestied to them, this SIMPL + statement will connect the two:

SetCresnet(0x07,69,dout) = GetCresnet(0x07,42,din);

NOTE: Thisisnot a permanent connection; it will only set the state when this
statement is executed.

Version:
SIMPL+ Version 2.00 only. Thisfunction is not availablein Versions 1.00 or 3.00.

344 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

1

Control System:

X-Generation only

SetSlot

Name:
SetSlot

Syntax:

SetSIot(INTEGER SLOT_NUMBER, INTEGER JOIN_NUMBER,
INTEGER TYPE);

Description:

Sets the state of the join number on a particular card slot. Note that the device must
be defined in SIMPL Windows and the join number to use must have asignal tied to
it for this function to work.

Parameters:

SLOT_NUMBER isan INTEGER containing the slot number of card to set the join
number. JOIN_NUMBER isan INTEGER containing the Join number to set. TY PE
is one of several predefined constants:

din: Digital inputs from device (symbol output list)
an: Analog inputs from device (symbol output list)
dout: Digital outputsto device (symbol input list)
aout: Analog outputs to device (symbol input list)

Return Value:

None.

Example:

Assuming arelay card hasbeen defined in Slot 1 and Relay A2 hasasignal nametied
to it, and atouchpanel has been defined at Cresnet ID 07, and press 42 has asignal
name tied to it, this SIMPL + statement will connect the two:

SetSlot(1,2,dout) = GetCresnet(0x07,42,din);

NOTE: Thisisnot a permanent connection; it will only set the state when this
statement is executed.

Version:
SIMPL+ Version 2.00 only. Thisfunction is not availablein Versions 1.00 or 3.00.

Control System:

X-Generation only

Language Reference Guide - DOC. 5797G SIMPL+® @ 345

Software Crestron SIMPL+®

Interfacing to the CEN-OEM

Interfacing to the CEN-OEM via a SIMPL+ Program
Overview

When using a X-Generation system to communicate over Ethernet to a CEN-OEM,
the CEN-OEM definition is used from the SIMPL Windows Configuration Manager.
This symbol has anal og inputs, analog outputs, digital inputs, digital outputs, serial
inputs, and serial outputs.

When alist of variables such as DIGITAL_INPUTsis declared, they normally start
at Digital Input 1 on the symbol and progress linearly up. For some applications, it

may be desirable to change the join numbers (leave gaps on the symbol) for a better
visual 1ook.

#ANALOG_INPUT_JOIN

Name:
#ANALOG_INPUT_JOIN

Syntax:

#ANALOG_INPUT_JOIN<constant>

Description:
Changes the join number starting with the next ANALOG_INPUT definition to the
join number specified by <constant>.

Example:

ANALOG_INPUT SIG1, SIG2, SI1G3, SIG4;

In this example, SIGL1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

ANALOG_INPUT SIG1, SIGZ;
#ANALOG_INPUT_JOIN 20
ANALOG_INPUT SIG3, SI1G4;

Here, SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed
to reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00

346 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

#ANALOG_OUTPUT_JOIN

Name:
#ANALOG_OUTPUT_JOIN

Syntax:
#ANALOG_OUTPUT_JOIN<constant>

Description:
Changesthejoin number starting with thenext ANALOG_OUTPUT definitiontothe
join number specified by <constant>.

Example:

ANALOG_OUTPUT SI1G1, SIG2, SI1G3, SIG4;

In this example, SIGL1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and S|G4 references Join #4.

ANALOG_OUTPUT SIG1, SIG2;
#ANALOG_OUTPUT_JOIN 20
ANALOG_OUTPUT SIG3, SI1G4;

SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SI G4 references Join #21.

Version:
SIMPL+ Version 2.00

#DIGITAL_INPUT_JOIN

Name:
#DIGITAL_INPUT_JOIN

Syntax:

#DIGITAL_INPUT_JOIN<constant>

Description:
Changes the join number starting with the next DIGITAL_INPUT definition to the
join number specified by <constant>.

Example:

DIGITAL_INPUT SIG1, SI1G2, SI1G3, SIG4;

In thisexample, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

DIGITAL_INPUT SIG1, SIG2;

Language Reference Guide - DOC. 5797G SIMPL+® @ 347

Software

Crestron SIMPL+®

#DIGITAL_INPUT_JOIN 20
DIGITAL_INPUT SIG3, SIG4;

SIG1 and SIG2 till reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00

#DIGITAL_OUTPUT_JOIN

Name:
#DIGITAL_OUTPUT_JOIN

Syntax:
#DIGITAL_OUTPUT_JOIN<constant>

Description:

Changesthe join number starting with the next DIGITAL_OUTPUT definitionto the
join number specified by <constant>.

Example:

DIGITAL_OUTPUT SIG1, SIG2, SIG3, SI1G4;

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

DIGITAL_OUTPUT SIG1, SIG2;
#DIGITAL_OUTPUT_JOIN 20
DIGITAL_OUTPUT SIG3, SI1G4;

SIG1 and SIG2 till reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00

#STRING_INPUT_JOIN

Name:
#STRING_INPUT_JOIN

Syntax:
#STRING_INPUT_JOIN<constant>

348 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Description:

Changes the join number starting with the next STRING_INPUT or
BUFFER_INPUT definition to the join number specified by <constant>.

Example:
STRING_INPUT SI1G1[20], S1G2[20], SIG3[20], S1G4[20];

BUFFER_INPUT B1$[20]

In this example, SIGL1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, SIG4 references Join #4, and B1$ references Join#5.

STRING_INPUT SI1G1[20], SIG2[20];
#STRING_INPUT_JOIN 20

STRING_INPUT SIG3[20], SI1G4[20];
BUFFER_INPUT B1$[20]

SIG1 and SIG2 till reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, SIG4 references Join #21, and B1$ references Join#22.

Version:
SIMPL+ Version 2.00

#STRING_OUTPUT_JOIN

Name:
#STRING_OUTPUT_JOIN

Syntax:

#STRING_OUTPUT_JOIN<constant>

Description:

Changes thejoin number starting with the next STRING_OUTPUT definition to the
join number specified by <constant>.

Example:

STRING_OUTPUT SIG1, SIG2, SI1G3, SIG4;
In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

STRING_OUTPUT SIG1, SIG2;

#STRING_OUTPUT_JOIN 20

STRING_OUTPUT SIG3, SIG4;

SIG1 and SIG2 till reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.

Language Reference Guide - DOC. 5797G SIMPL+® @ 349

Software Crestron SIMPL+®

Version:
SIMPL+ Version 2.00

CEN-OEM-Specific Definitions

CEN-OEM Specific Definitions Overview

The CEN-OEM has one serial port which is used to communicate with a destination
device. SIMPL + defines several special purpose variables exclusively to work with
the CEN-OEM to manipulatethis serial port. These variables are only valid when the
fileis saved with an OEM extension. Each OEM variable has a specific type
(DIGITAL_INPUT, etc.) to which all the same rules as any other variable declared
of that type have.

In the following examples, the “device” port is the port that talks to the equipment
(device) being controlled. The “main” port is the computer port of the CEN-OEM.
This port is usually used for communicating with a host computer for maintenance,
but various pins may be used for other applications as shown in the following
examples.

_OEM_BREAK

Name:
_OEM_BREAK

Syntax:

_OEM_BREAK = <expression>; // Write to Variable

or any expression that can use a variable as part of its contents.

Description:

When set to a non-zero value, causes a short break to be transmitted on the port. A
Short break is 17-20 bits of logic low. When the system is done generating the short
break, it will set the variable to 0. The variable may a so be read back from to
determine its current status. It is treated the same asa DIGITAL_OUTPUT.

Example:

_OEM_BREAK = 1; // Generate A Short Break

Version:
SIMPL+ Version 2.00

350 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

_OEM_CD

Name:
_OEM_CD

Syntax:

Any expression that can use avariable as part of its contents.

Description:

Thisvariableistreated asaDIGITAL_INPUT and may beread from only. CD isthe
acronym for Carrier Detect. When a modem is hooked up to an RS-232 port and a
connection (carrier) is made, the modem typically drivesthis pin high to let the
connected hardware know that a data connectionis present. Thisline may be used for
other purposes depending on the hardware connected to the CEN-OEM.

Example:

PUSH _OEM_CD

{
PRINT(“Carrier Detect Pin has gone high!\n™);

}

Version:
SIMPL+ Version 2.00

_OEM_CTS

Name:
_OEM_CTS

Syntax:

Any expression that can use a variable as part of its contents.

Description:

Thisvariableistreated asaDIGITAL_INPUT and may be read from only. CTSis
the acronym for Clear To Send. In flow control for handshaking, a device will
typicaly control thisline, and raise it high when the CEN-OEM is alowed to
transmit, and drop it low when it wants the CEN-OEM to stop transmitting.

It can also be used in other situations besides flow control, and in these situations, the
CEN-OEM can monitor the status of the line directly through this pin.

Language Reference Guide - DOC. 5797G SIMPL+® @ 351

Software Crestron SIMPL+®

Example:

PUSH _OEM_CTS

{
PRINT(*“CTS Pin has gone high!\n™);

}

Version:
SIMPL+ Version 2.00

_OEM_DTR

Name:
_OEM_DTR

Syntax:

_OEM_DTR = <value>;
or any expression that can use a variable as part of its contents.

Description:

When set to anon-zero value, raises the DTR pin high. Thispin istypically used to
signify “Data Terminal Ready”, which means that the CEN-OEM istelling an
external piece of equipment that it is online and ready to function. The pin may be
used for other purposes (or not at all). Thisvalueistreated asaDIGITAL_OUTPUT
and may be read.

Example:

PUSH _OEM_CTS

{
PULSE(500, _OEM_DTR);

}

The above example will pulse the DTR pin for 5-seconds when the CTS line goes
high.

Version:
SIMPL+ Version 2.00

352 @ SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

_OEM_LONG_BREAK

Name:
_OEM_LONG_BREAK

Syntax:

_OEM_LONG_BREAK = <expression>;

or any expression that can use a variable as part of its contents.

Description:

When set to anon-zero value, causesthe start of abreak being transmitted on the port.
A break is continuous logic low being generated on the port. In order to stop break
generation, the variable should be set to 0. The variable may also be read back from
to determineits current status. It istreated the sasme asaDIGITAL_OUTPUT.

If break generationisin progressand datatransmissionon_OEM_STR_OUT will be
ignored.

Example:

PUSH _OEM_CTS

{
_OEM_LONG_BREAK = 1;
WAIT(100)
_OEM_LONG_BREAK=0;
}
In this example, the break is generated for 1-second when the CTS pinisdriven high.

Version:
SIMPL+ Version 2.00

_OEM_MAX_STRING

Name:
_OEM_MAX_STRING

Syntax:

_OEM_MAX_STRING = <expression>;

or any expression that can use a variable as part of its contents.

Description:

Controlsthe maximum embedded packet sizethat istransmitted on the Ethernet port.
Thisvariable istreated the same as ANALOG_OUTPUT. The default is 250 bytes
but it is recommended that this value not be changed for most applications.

Language Reference Guide - DOC. 5797G SIMPL+® @ 353

Software

Crestron SIMPL+®

Example:

_OEM_MAX_STRING = 1000;
In this example, the maximum embedded packet size is changed to 1000 bytes.

Version:
SIMPL+ Version 2.00

_OEM_PACING

Name:
_OEM_PACING

Syntax:

_OEM_PACING = <expression>;
or any expression that can use a variable as part of its contents.

Description:

Controls the number of milliseconds the system will delay between sending bytesin
agiven string. Thisvariable is treated the same as ANALOG_OUTPUT. The
maximum value allowed is 255 (250ms). Values greater than 255 will use the lower
byte of the number.

Example:
CHANGE _OEM_STR_IN
{
IF(_OEM_STR_IN = “\x01\x02")
{

_OEM_STR_OUT = ““\x02ACK\x03";
CLEARSTRING(_OEM_STR_IN);

}

ks

FUNCTION MAINQ)

{
_OEM_PACING = 10;

}

In thisexample, the pacing is set to 10ms. When the string “\x01\x02" comesinto the
port, a5-byte string is sent out the port. The system waits 10ms after generating each
character before sending the next one.

Version:
SIMPL+ Version 2.00

354 @ SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+®

Software

_OEM_RTS

Name:
_OEM_RTS

Syntax:

_OEM_RTS = <expression>;

or any expression that can use a variable as part of its contents.

Description:

Thisvariableistreated the same as DIGITAL_OUTPUT. In a program where
hardware handshaking is not being used, the program may control the RTS pinfor its
own application. Writing a non-zero value to this variable sets the RTS pin high,
writing O setsit low.

Example:

PUSH _OEM_CTS

{

DELAY(10);
_OEM_RTS = 1;
}

In this program, the RTS pin will be driven high by the CEN-OEM 0.1-seconds after
the CTS pin isdriven high by an external system.

Version:
SIMPL+ Version 2.00

_OEM_STR_IN

Name:
_OEM_STR_IN

Syntax:
Any expression where aBUFFER _INPUT islegal.

Description:

Thisvariableistreated the same as BUFFER_INPUT and reflects data coming into
the CEN-OEM input buffer. The buffer is 255 bytes wide.

Language Reference Guide - DOC. 5797G SIMPL+® @ 355

Software Crestron SIMPL+®

Example:
INTEGER I;

CHANGE _OEM_STR_IN

{

FOR(I=1 to len(_OEM_STR_IN))
IF(byte(_OEM_STR_IN, 1) = Ox7F
_OEM_STR_OUT = “\x15”;
CLEARSTRING(_OEM_STR_IN);

}

In this example, whenever the input buffer changes, it is scanned for the character
with the hex value of Ox7F. Each timeit is present, a0x15 is transmitted. The buffer
iscleared at the end of the iteration.

Version:
SIMPL+ Version 2.00

_OEM_STR_OUT

Name:
_OEM_STR OUT

Syntax:
Any expression where aBUFFER_OUTPUT islegal.

Description:

Thisvariableistreated the same as BUFFER_OUTPUT and reflects data coming
from the CEN-OEM input buffer. The buffer is 255 bytes wide.

Example:
INTEGER I;

CHANGE _OEM_STR_OUT

{

FOR(I=1 to len(_OEM_STR_OUT))
IF(byte(_OEM_STR_OUT, 1) = Ox7F
_OEM_STR_IN = “\x15”;
CLEARSTRING(_OEM_STR_OUT);

b

In this example, whenever the input buffer changes, it is scanned for the character
with the hex value of Ox7F. Each timeit is present, a0x15 istransmitted. The buffer
iscleared at the end of the iteration.

Version:
SIMPL+ Version 2.00

356 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Index
Symbols F N 4 = V£ S 31
FANALOG INPUT_JOIN, v 6 Al o 0
#ANALOG_OUTPUT_JOIN, ..ccoovrieiieerieen, 347 Atol ' 110
HCATEGORY s oo 33) e e et e et e et et et ereere e
#CRESTRON_LIBRARY, ..o 34 B
#DEFAULT _NONVOLATILE, ...cocevevveeeee 35
H#DEFAULT _VOLATILE, .o 36 1 100
HDEFINE CONSTANT, oo, 37 Bit & Byte FUNCLIONS,cccccoeeveerievieie e 100
#DIGITAL_INPUT _JOIN, ..o, 347 Bitwise OpErators,ccccoeverereeierierienesesee e 15
#DIGITAL_OUTPUT _JOIN, ..oovevreerrrerrerniens 348 Branching & Decision Constructs,c.c....... 86
HHELP, w.oooooeeeeeeeeee s 38 BREAK, s 86
#HELP BEGIN ... #HELP_END,ccccceuvvueee. 39 BUFFER_INPUT, ..o 50
HHINT, oo 40 ByRef, ByVal, ReadOnlyByRef,c......... 269
#IF_DEFINED ... #ENDIF, ...oovievieeeeeeeeesineane 41 BYLE, oot 102
#IF_NOT_DEFINED ... #ENDIF,ccccveeenne 44
#STRING_INPUT_JOIN, +..oorroeeoeoeeeeeererereeennenn 348 C
#STRING_OUTPUT_JOIN, ooovvvvvvrvrrrrnsnnnneenee 349 Calling a Function,cccceviciccicccciinns 274
#SYMBOL_NAME, .o, 42 Cancel AlIWait,cccoeeveeeececeeeceeee e 258
#USER_LIBRARY, oo, 43 CancelWait,coecveereeeecieee e 259
_OEM_BREAK, ..ottt 350 CEN-OEM-Specific Definitions,ccoowven... 277,
_OEM_CD, oottt 351 350
_OEM_CTS, ., 351 CHANGE, ..o 75
_OEM_DTR, oo, 352 CheCKFOrDISK, w...oucvvevercrecieeeeessesseee e, 119
_OEM_LONG_BREAK,ccoviiiiiiiiiiis 353 ChE, ettt en e 111
_OEM_MAX_STRING, ...coeooviiiiiiiiiiiis 353 ClEArBUFTEN, w.vucveeeeeeeeeeceecteseeseree et 219
_OEM_PACING, ..ot 34 COMMENES, eeereeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et seseeneeens 13
_OEM_RTS, ... 355 Common Runtime Errors, ___________________________________ 277
_OEM_STR_| N, .. 355 Common Runtime Overvievv' _____________________________ 277
_OEM_STR_OUT, ..ot 356 COMPIler DIFECHVES,oveveeeeeeeeeeseeereeseseesnes 33
Compiler Directives OVErview,ccccceeeeeeenne. 33
A Compiler Errors and Warnings Overview, 286
ADS, e s 205 COMPILER WARNINGS, ..o, 333
Allowable I/O List Combinations,ocoooe...... 45 CONSTRUCT ERRORS,ccocvvevivreeie e 326
ANALOG INPUT, woeeeeeeeeeee e e s e ensnens 47 ConventioNS USE,occvveieiiiieeeieeeesreee e e essneeees 13
ANALOG_OUTPUT, .oooooeseesesseeseesoe 48 Converting from an X-Generation to a 2-Series
Arithmetic OPEIBLONS, veoveeeeeeeeeeeseeeseeeseereee 15 Target, s 7
AITay OPEFatioNS,c..ovvereeieeeeresseessssenssessssnnes 93 CRESTRON Limited Warranty, 367
AFTaY OU Of DOUNGS, .vvvvvveeeeeeeeeeeeeeees oo 277 CSOWITCH, ettt 87

Language Reference Guide - DOC. 5797G

SIMPL+® @ 357

Software

Crestron SIMPL+ ®

D
Data Conversion FUnctions,cccceeeeeveieennns 109
DB, ooiveieeectecee ettt et 242
DAY, .iovieeiieinisees e 243
DECLARATION ERRORS,cccevvvveerrerinnne. 304
DECIarations,ccceevueeireeeieeciee et 45
Declarations OVEIVIEW,ccoveveeeeeieeiieireeveeseenns 45
= - Y 234
DIGITAL_INPUT, .o 51
DIGITAL_OUTPUT, ...coeciceeeeeeeeeee e 52
[1@ T U\ [I 1 TR 82

E
Edit Preferences,occovevveceeeeee e 9
E-mail FUNCLIONS,ccoeivieieireeiecrece e 71
EndFi1eOperations,cccccvveeveneeceesesieesiennnns 120
EVENT, oottt 77
EVENLS, .o 75
Example Programs,c..ccceereieneenecneieneenes 279
EXPRESSION ERRORS,ccccoovevvevreiieieerenns 301
EXpressions & Statements,ccoceveveereereniennnnens 81

F
FATAL ERRORS,cooviiieiiiece et 300
FILEERRORS,ccovciiiticiice et 332
File Function Return Error Codes,cccuee.... 117
File FUNCLIONS,ccecoveeeeiectecce e 116
File Time and Date Functions Overview, 284
FILE_INFO Structure,cccceeeveeveeveeesiesesreseenns 135
FIIEBOF, ..ottt 121
FIlECIOSE,c.veeivti ettt 122
FIIEDEL,oeeeeveieeeeee et 123
FIlEDALE, ..oiveeeeeitectecteete ettt 123
FIilEDAY, .ovveeeeeeeecese e 125
FIlEDEELE, ...coveiveeeecteeecte et 126
FIHEEOF, .ottt 127
FileGetDateNUum,ccoeeveeeerieiiecee e 128
FileGetDayOfWeekNUm,ccccoveveevvrerencrienin 129
FileGEtHOUrNUM, ...cveevereciieecece e 130
FileGEtMIiNULESNUM,cecvveriiieieeieere e 131
FileGetMonthNUmM,cccccevevieiieee e, 132
FileGetSecondsNUM,ccceeeveeieeeieeeireesee e 133
FileGetY earNUm,c..ccovvvveeeiieiieee e 134
FileLength, ... 136
FIEMONtN, ..o 137

FIlEOPEN, e 138
FileRead,cccooveeeieiececeeceece e 141
FIIESEEK, oveiviiteeeee e 143
FIETIME, et 145
FIHEWIILE, oo 146
FiNG, oo 220
FIiNdCIOSE,ooovveeeeeee e 148
FINAFITSE, oot 149
FINANEXL, ooceveieeeee e 151
FOR, oottt b 83
FUIl SEaCK, ..ccveiiereeeeeee et 277
FUNCTION ARGUMENT ERRORS, 319
Function DEfinition,ccccoeevveveeviee e 267
Function Libraries,ccccooeveeeeveececeeie e, 275
Function Parameters,ccoovveeeereeceeerecceeeveenne, 268
G
Gather, ..oooviceecicec 221
General Information,ccocevvveeeeeeeeicreccee e 22
GEEIC, oot s 223
GEICIP, oottt e 337
GELCIESNEL,vvevveecieecteecee e 338
GetCurrentDIreCtory,cceveeveeereseerieseereeseeens 152
GETDATENUM, ..ot 244
GETDAY OFWEEKNUM,......c.ccovvieireirierecrene, 245
GETHOURNUM, ...ooooiecieeeeee et 246
GETHSECONDS,ccooeieeiecteecteeieteee e 247
GetLastModifiedArraylndex,cccoovvevvererreennne. 93
GETMINUTESNUM, ...oooviieiieecreeeereere e, 248
GETMONTHNUM, ..ooovtiiiieiiececeieceeere e, 249
GEtNUMATITAYCOIS, oo 95
GEtNUMATITQYROWS, ...cvveeiiiieeerieeeesee e 97
GETSECONDSNUM,covviieietecrecreere e 250
GEESIOL, .ooviiiecriceiece et 339
GETTICKS, .ttt 251
GETYEARNUM, ...oooviiiieee e 252
H
High, o 103
IF-ELSE, .oooti ettt 89
IF-ELSE, .ttt 89
INSErt CalegONY, ..oceeeeeeereeeeerieree e 11
INTEGER, ...ttt 54

358 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
111 (0o (UTox 11] o IR 1 P
[SDITECLOMY, .evveeieeneriierieesees e 153 .
e o PAUSCAIIWE, v s sessessersrse 260
ommmmmmmmmmmmmm————e PaUSEWAIL,coveceirereiiieieeeee e 261
ISREAAONIY, ..o e 155 Print 216
|SSIGNADEAINED, oo 340 prmé;i_mm' .. 2
S G L T 156 OCESSLOGIC, covvrsssssivvssesssssvsssss s
Program Structure,cceceeceveeseneenescenenee 276
ISVOIUME, ettt 157 . .
ItoA 112 Programming Environment,cccccooevvrienennns 8
ItoH;ax. """"""""""""""""""""""""""""""""""" 113 PUISE, v 236
Tmmmmmmmmmmmmm——— — gy, PUSH, oot 78
L
R
Language Constructs & Functions,c.ccc.c.... 29
. . RaNdOmM,ooeeeeieicec e 211
Language Constructs & Functions Overview, 29)
Left 224 Random Number Functions,ccoceeevennencns 211
Len, .. - Reading and Writing Datato aFile, 118
O, ottt REAINEGEN, oo 159
Library not found,ccccooevvieevnice e 277
. g . ReadI NtEgErATTaY, ..o 161
Licensing of SIMPL+ Cross Compiler, 2 ReadlL onal it 163
LONG_INTEGER, ..ooooeeceeereeeceeerssscceeesesseeesse 56 i\ eadLozgl :tegerx& """""""""""""""""""""""" ol
Looping CONSLIUCES,oveveeererenieeeeererieieeseseseenene 82 ONGTALCGEIATTAY, wrrvvvvrssvvsss s
ReadSignedinteger,ccocevveverereereereeeneseseenens 167
LOW, ottt 104 .
Lower 296 ReadSignedIi NtegerArray,ccovvveereesereseseenens 169
o) ettt ettt eens 2e ReadSignedL ongineger, ... 171
LtOH,ex. ... e ReadSignedL ongIntegerATTay, ... 173
Prmmmmmmmm—— sy, REAASIIING, ...vvecvereeeeecrereeecee et 175
M ReadStrINGAITAY, ..o 177
ReBASIIUCLUIE,oeveeeiieeereeereeereeee e 179
MaKEDITECIONY, ..veeeeeeeeeiriire e 158 Relational OPErators,cocovveeeeereereeeseseesneens. 16
MEKESIING, .oovrveerrreseresseressresese s 214 REIEASE, ...ovvvveeviossiisesiess s 79
Mathematical FUNCLiONS,cc.cocvvveveevecicienes 205 REIMOVE, ...t 228
MaBX, e s 206 REMOVEDITECIONY, ...vvveevvieeirieisieisieesieesieseseeeas 181
Merchandise,cccccoveveiecve i 367 RESUMEAINIWAIL, v 262
Merchandise Returns/ Repair Service, 367 RESUMEWIL,ooevvvecveeciecseees s 263
M Id, .. 227 Reti meWait’ ___ 264
MIN, e 207 Return and Warranty Policies,ccooovveeviireeeenn 367
MONTH, oo 253 Returni ng AVAUE, e 272
U S 208 REVERSEFIND, .ovoveeeeeeeeeeeeeeeeeeseeesseena 229
RIGht, v 230
N RN, oo ssnoeessssnsseesssnnneees 212
NONVOIBLIE, .vvvvvvvvaereesseeeeseeesseeeseis s 58, 70 ROBIELEFL, ..o 211
NUMENTC FOMMALS, ©..oovveernaeeeesseeeessneenessseesssanns 21 ROMEELEMILONG, oovvvvvvvv 107
RotateRight,ccooeviiiiiecereeeeee e 106
O RotateRightLong,ccocoovverenereieeeecreee e 108
Operator Precedence & Grouping,c.c.ccoeeeeeeee 20 S
(001 - (0] £ TP 13
Scheduler isTull, ..o, 278
SO, i 213

Language Reference Guide - DOC. 5797G

SIMPL+® @ 359

Software

Crestron SIMPL+ ®

SendCresnetPacket,cccceeeveeeeeeieeire e 341
SENAMaIl, .oceeeic e 73
SendPacketTOCPU,ccooviirirrinreeeisieee 342
SELATTAY, coveriieieerie e 98
SELCIP, oo 343
SETCLOCK, ..ooiviiiriririeiseeseseee s 254
SEICIESNEL, ..o 344
SetCUrrentDIreCtOrY,ooeeeveeeeereseeseeseeseeeeeens 182
SETDATE, ..ot 255
SELSIOL, o 345
SELSIING, wevereerieieee e 231
Signed vs Unsigned Arithmetic,..........cccceevnennene 18
SIGNED_INTEGER,cccooiiiiieiinieeeeeeen 58
SIGNED_LONG_INTEGER,ccccocevvreirirrenenn 60
SIMPL+ Version 3.00 Revisions,ccccoeuennee. 336
SMAX, e 209
SMIN, i 210
Software License Agreement,ccocceeeeeennenn 365
Software Requirements,c.ccvcevveereereereeenenennns 1
Stacked EVENtS,cocovveviriireeneeneee e 80
StartFileOperations,ccccceeeveeveevesiereeseereeeeens 183
STRING, ..ottt 62
String array out of bounds,ccccceiiiiiinnnn 278
STRING CONCATENATION, ..ccovivrrrririenns 218
String Concatenation,ccccceeveerieveereneeeenenns 218
String Formatting & Printing Functions, 214
StriNG OPEraLOrS, ..ccvcovevevereereerieseeseeseeeeeeesessenees 17
String Parsing & Manipulation Functions, 219
STRING _INPUT, ..cooiireirriseeseeseesieeseeeas 64
STRING_OUTPUT, ..ot 65
STRUCTURES,ccoo i 67
SWITCH, .ot 91
SYNTAX ERRORS,cccovvirinreniseiseens 289
System Control,ccceevveeieveeieseee e 234
System Interfacing,ccoeeeeeereene s 238

T
Target SEleCtion,ccccevvevereeeeeeeeee s 8
Task Switching for 2-Series Control Systems,25
TerminateEvent,cccvevevecceseecesre e 237
... 256
Time & Date FUNCLions,ccceeeeevvvecvveeeneeenne 242
Trademark Information,ccccvvevveinniinincns 367
U
... 233
User Defined FUNctions,cccccevveveeeecceeseenen, 267
\
Variable NameS,ccceevvevveciecee e 13
VOLAl€, oo 69
W
... 265
Walt EVENES, ..ocveiececece e 257
WaitFOrNewDISK,cccccveeerieieene e 184
WHAE'S NEW, .ttt 7
WHILE, oo 85
WIHEEINLEGE, wooveveeeeieee e 185
Wrtel NtEgErAITaY, vcceeeeeece e 187
WriteL ONgINtEQES,covevveeeirereneriere e 189
WriteL onglintegerArray,ccoeoeeeeereereseseeneees 284
WriteSignedinteger,ocoerverereenenereerieeas 191
WriteSignedintegerArray,cceeeeeeveeeeseneens 193
WriteSignedLonglnteger,cccccvevveeeveveeinnnnns 195
WriteSignedLonglntegerArray,occceveeveerenennns 197
WIHLESHIING, eoeveieeieiieeie e 199
WILESLITNGAITAY, .eeveeeeireeiereeieeeiee e 201
WITESLIUCLUIE, ...vveeeeecteeceeecte et 203
X

X-Generation Target and 2-Series Target Differences, 7

360 ® SIMPL+®

Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Software License Agreement

This License Agreement (“Agreement”) isalegal contract between you (either an individual or a single business entity) and
Crestron Electronics, Inc. (“Crestron”) for software referenced in this guide, which includes computer software and, as applicable, asso-
ciated media, printed materials, and “online” or electronic documentation (the “ Software”).

BY INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE, YOU REPRESENT THAT YOU ARE AN
AUTHORIZED DEALER OF CRESTRON PRODUCTS OR A CRESTRON AUTHORIZED INDEPENDENT PROGRAMMER
AND YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF
THIS AGREEMENT, DO NOT INSTALL OR USE THE SOFTWARE.

IF YOU HAVE PAID A FEE FOR THIS LICENSE AND DO NOT ACCEPT THE TERMS OF THIS AGREEMENT, CRE-
STRON WILL REFUND THE FEE TO YOU PROVIDED YOU (1) CLICK THE DO NOT ACCEPT BUTTON, (2) DO NOT
INSTALL THE SOFTWARE AND (3) RETURN ALL SOFTWARE, MEDIA AND OTHER DOCUMENTATION AND MATERI-
ALS PROVIDED WITH THE SOFTWARE TO CRESTRON AT: CRESTRON ELECTRONICS, INC.,, 15 VOLVO DRIVE, ROCK-
LEIGH, NEW JERSEY 07647, WITHIN 30 DAY S OF PAYMENT.

LICENSE TERMS

Crestron hereby grants You and You accept a nonexclusive, nontransferable license to use the Software (a) in machine read-
able object code together with the related explanatory written materials provided by Creston (b) on a central processing unit (“ CPU")
owned or leased or otherwise controlled exclusively by You, and (c) only as authorized in this Agreement and the related explanatory
files and written materials provided by Crestron.

If this software requires payment for alicense, you may make one backup copy of the Software, provided Your backup copy
isnot installed or used on any CPU. You may not transfer the rights of this Agreement to a backup copy unlessthe installed copy of the
Software is destroyed or otherwise inoperable and You transfer al rights in the Software.

You may not transfer the license granted pursuant to this Agreement or assign this Agreement without the express written
consent of Crestron.

If this software requires payment for a license, the total number of CPU’s on which all versions of the Software are installed
may not exceed one per license fee (1) and no concurrent, server or network use of the Software (including any permitted back-up cop-
ies) is permitted, including but not limited to using the Software (a) either directly or through commands, data or instructions from or to
another computer (b) for local, campus or wide area network, internet or web hosting services; or (c) pursuant to any rental, sharing or
“service bureau” arrangement.

The Softwareis designed as a software development and customization tool. As such Crestron cannot and does not guarantee
any results of use of the Software or that the Software will operate error free and You acknowledge that any development that You per-
form using the Software or Host Application is done entirely at Your own risk.

The Software is licensed and not sold. Crestron retains ownership of the Software and al copies of the Software and reserves
all rights not expresdly granted in writing.

OTHER LIMITATIONS

You must be an Authorized Dealer of Crestron products or a Crestron Authorized Independent Programmer to install or use
the Software. If Your status as a Crestron Authorized Dealer or Crestron Authorized Independent Programmer is terminated, Your
license is also terminated.

You may not rent, lease, lend, sublicense, distribute or otherwise transfer or assign any interest in or to the Software.

You may not reverse engineer, decompile, or disassemble the Software.

You agree that the Software will not be shipped, transferred or exported into any country or used in any manner prohibited by
the United States Export Administration Act or any other export laws, restrictions or regulations (“ Export Laws’). By downloading or
installing the Software You () are certifying that You are not anational of Cuba, Iran, Irag, Libya, North Korea, Sudan, or Syria or any
country to which the United States embargoes goods (b) are certifying that You are not otherwise prohibited from receiving the Soft-
ware and (c) You agree to comply with the Export Laws.

If any part of this Agreement is found void and unenforceable, it will not affect the validity of the balance of the Agreement,
which shall remain valid and enforceable according to its terms. This Agreement may only be modified by awriting signed by an autho-
rized officer of Crestron. Updates may be licensed to You by Crestron with additional or different terms. This is the entire agreement
between Crestron and You relating to the Software and it supersedes any prior representations, discussions, undertakings, communica-
tions or advertising relating to the Software. The failure of either party to enforce any right or take any action in the event of a breach
hereunder shall constitute awaiver unless expressly acknowledged and set forth in writing by the party alleged to have provided such
waiver.

Language Reference Guide - DOC. 5797G SIMPL+® @ 361

Software Crestron SIMPL+®

If You are abusiness or organization, You agree that upon request from Crestron or its authorized agent, You will within thirty
(30) days fully document and certify that use of any and all Software at the time of the request isin conformity with Your valid licenses
from Crestron of its authorized agent.

Without prejudice to any other rights, Crestron may terminate this Agreement immediately upon notice if you fail to comply
with the terms and conditions of this Agreement. In such event, you must destroy all copies of the Software and all of its component
parts.

PROPRIETARY RIGHTS

Copyright. All title and copyrights in and to the Software (including, without limitation, any images, photographs, anima
tions, video, audio, music, text, and “applets’ incorporated into the Software), the accompanying media and printed materials, and any
copies of the Software are owned by Crestron or its suppliers. The Software is protected by copyright laws and international treaty pro-
visions. Therefore, you must treat the Software like any other copyrighted material, subject to the provisions of this Agreement.

Submissions. Should you decide to transmit to Crestron’s website by any means or by any media any materials or other infor-
mation (including, without limitation, ideas, concepts or techniques for new or improved services and products), whether as informa-
tion, feedback, data, questions, comments, suggestions or the like, you agree such submissions are unrestricted and shall be deemed
non-confidential and you automatically grant Crestron and its assigns a non-exclusive, royalty-tree, worldwide, perpetual, irrevocable
license, with the right to sublicense, to use, copy, transmit, distribute, create derivative works of, display and perform the same.

Trademarks. CRESTRON and the Swirl Logo are registered trademarks of Crestron Electronics, Inc. You shall not remove or
conceal any trademark or proprietary notice of Crestron from the Software including any back-up copy.

GOVERNING LAW

This Agreement shall be governed by the laws of the State of New Jersey, without regard to conflicts of laws principles. Any
disputes between the parties to the Agreement shall be brought in the state courts in Bergen County, New Jersey or the federal courts
located in the District of New Jersey. The United Nations Convention on Contracts for the International Sale of Goods, shall not apply
to this Agreement.

CRESTRON LIMITED WARRANTY

CRESTRON warrants that: (a) the Software will perform substantially in accordance with the published specifications for a
period of ninety (90) days from the date of receipt, and (b) that any hardware accompanying the Software will be subject to its own lim-
ited warranty as stated in its accompanying written material. Crestron shall, at its option, repair or replace or refund the license fee for
any Software found defective by Crestron if notified by you within the warranty period. The foregoing remedy shall be your exclusive
remedy for any claim or loss arising from the Software.

CRESTRON shall not be liable to honor warranty terms if the product has been used in any application other than that for
which it was intended, or if it as been subjected to misuse, accidental damage, modification, or improper installation procedures. Fur-
thermore, this warranty does not cover any product that has had the serial number or license code altered, defaced, improperly obtained,
or removed.

Notwithstanding any agreement to maintain or correct errors or defects Crestron, shall have no obligation to service or correct
any error or defect that is not reproducible by Crestron or is deemed in Crestron’s reasonabl e discretion to have resulted from (1) acci-
dent; unusual stress; neglect; misuse; failure of electric power, operation of the Software with other media not meeting or not main-
tained in accordance with the manufacturer’s specifications; or causes other than ordinary use; (2) improper installation by anyone other
than Crestron or its authorized agents of the Software that deviates from any operating procedures established by Crestron in the mate-
rial and files provided to You by Crestron or its authorized agent; (3) use of the Software on unauthorized hardware; or (4) modification
of, alteration of, or additions to the Software undertaken by persons other than Crestron or Crestron’s authorized agents.

ANY LIABILITY OF CRESTRON FOR A DEFECTIVE COPY OF THE SOFTWARE WILL BE LIMITED EXCLU-
SIVELY TO REPAIR OR REPLACEMENT OF YOUR COPY OF THE SOFTWARE WITH ANOTHER COPY OR REFUND OF
THE INITIAL LICENSE FEE CRESTRON RECEIVED FROM YOU FOR THE DEFECTIVE COPY OF THE PRODUCT. THIS
WARRANTY SHALL BE THE SOLE AND EXCLUSIVE REMEDY TO YOU. IN NO EVENT SHALL CRESTRON BE LIABLE
FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND (PROPERTY OR ECONOMIC
DAMAGESINCLUSIVE), EVEN IF A CRESTRON REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES OR OF ANY CLAIM BY ANY THIRD PARTY. CRESTRON MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
ASTOTITLE OR INFRINGEMENT OF THIRD-PARTY RIGHTS, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY OTHER WARRANTIES, NOR AUTHORIZES ANY OTHER PARTY TO OFFER ANY WARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY FOR THIS PRODUCT. THISWARRANTY STATEMENT SUPERSEDES
ALL PREVIOUSWARRANTIES.

362 ® SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

Return and Warranty Policies

Merchandise Returns / Repair Service

1. No merchandise may be returned for credit, exchange, or service without prior authoriza-
tion from CRESTRON. To obtain warranty service for CRESTRON products, contact the
factory and request an RMA (Return Merchandise Authorization) number. Enclose a note
specifying the nature of the problem, name and phone number of contact person, RMA
number, and return address.

2. Products may be returned for credit, exchange, or service with a CRESTRON Return Mer-
chandise Authorization (RMA) number. Authorized returns must be shipped freight prepaid
to CRESTRON, Cresskill, N.J., or its authorized subsidiaries, with RMA number clearly
marked on the outside of all cartons. Shipments arriving freight collect or without an RMA
number shall be subject to refusal. CRESTRON reserves the right in its sole and absolute
discretion to charge a 15% restocking fee, plus shipping costs, on any products returned
with an RMA.

3. Returnfreight charges following repair of items under warranty shall be paid by CRE-
STRON, shipping by standard ground carrier. In the event repairs are found to be non-war-
ranty, return freight costs shall be paid by the purchaser.

CRESTRON Limited Warranty

CRESTRON ELECTRONICS, Inc. warrantsits products to be free from manufacturing defectsin materi-
als and workmanship under normal use for a period of three (3) years from the date of purchase from
CRESTRON, with the following exceptions. disk drives and any other moving or rotating mechanical
parts, pantilt heads and power supplies are covered for a period of one (1) year; touchscreen display and
overlay components are covered for 90 days; batteries and incandescent lamps are not covered.

This warranty extends to products purchased directly from CRESTRON or an authorized CRESTRON
dealer. Purchasers should inquire of the dealer regarding the nature and extent of the dealer's warranty, if
any.

CRESTRON shall not be liable to honor the terms of this warranty if the product has been used in any
application other than that for which it was intended, or if it has been subjected to misuse, accidental dam-
age, modification, or improper installation procedures. Furthermore, this warranty does not cover any
product that has had the serial number altered, defaced, or removed.

This warranty shall be the sole and exclusive remedy to the original purchaser. In no event shall CRE-
STRON be liable for incidental or consequential damages of any kind (property or economic damages
inclusive) arising from the sale or use of this equipment. CRESTRON is not liable for any claim made by
athird party or made by the purchaser for athird party.

CRESTRON shall, at its option, repair or replace any product found defective, without charge for parts or
labor. Repaired or replaced equipment and parts supplied under this warranty shall be covered only by the
unexpired portion of the warranty.

Except as expressly set forth in this warranty, CRESTRON makes no other warranties, expressed or
implied, nor authorizes any other party to offer any warranty, including any implied warranties of mer-
chantability or fitness for a particular purpose. Any implied warranties that may be imposed by law are
limited to the terms of this limited warranty. This warranty statement supersedes all previous warranties.

Trademark I nformation

All brand names, product names, and trademarks are the sole property of their respective owners. Win-
dows is a registered trademark of Microsoft Corporation. Windows95/98/Me/XP and WindowsNT/2000
are trademarks of Microsoft Corporation.

Language Reference Guide - DOC. 5797G SIMPL+® @ 363

TV CRESTRON

Crestron Electronics, Inc. Language Reference Guide — DOC. 5797G
15 Volvo Drive Rockleigh, NJ 07647 04.03
Tel: 888.CRESTRON

Fax: 201.767.7576 Specifications subject to

www.crestron.com change without notice

	SIMPL+ Language Reference Guide
	Introduction
	Software Requirements
	Licensing of SIMPL+ Cross Compiler
	What's New
	Converting from an X-Generation to a 2-Series Target
	X-Generation Target and 2-Series Target Differences

	Programming Environment
	Programming Environment Overview
	Target Selection
	Edit Preferences
	Insert Category

	General Information
	Conventions Used
	Variable Names
	Comments

	Relative Path Names for Files

	Operators
	Operators Overview
	Signed vs Unsigned Arithmetic
	Operator Precedence & Grouping
	Numeric Formats

	Task Switching
	Task Switching for X-Generation (CNX) Control Systems
	Task Switching for 2-Series Control Systems

	Language Constructs & Functions
	Language Constructs & Functions Overview
	Arrays
	Compiler Directives
	#CRESTRON_LIBRARY
	#DEFAULT_NONVOLATILE
	#DEFAULT_VOLATILE
	#DEFINE_CONSTANT
	#HELP
	#HELP_BEGIN … #HELP_END
	#HINT
	#IF_DEFINED … #ENDIF
	#SYMBOL_NAME
	#USER_LIBRARY
	#IF_NOT_DEFINED … #ENDIF

	Declarations
	Declarations Overview
	Fixed and Variable Size Arrays
	ANALOG_INPUT
	ANALOG_OUTPUT
	BUFFER_INPUT
	DIGITAL_INPUT
	DIGITAL_OUTPUT
	INTEGER
	LONG_INTEGER
	SIGNED_INTEGER
	SIGNED_LONG_INTEGER
	STRING
	STRING_INPUT
	STRING_OUTPUT
	STRUCTURES
	Nonvolatile
	SendMail
	EVENT
	PUSH
	Release
	Stacked Events
	FOR
	WHILE
	CSWITCH
	IF - ELSE
	SWITCH
	GetLastModifiedArrayIndex
	GetNumArrayCols
	GetNumArrayRows
	SetArray
	Byte
	High
	Low
	RotateLeft
	RotateRight
	RotateLeftLong
	RotateRightLong
	Atol
	Chr
	ItoA
	ItoHex
	LtoA
	LtoHex

	File Functions
	File Functions Overview
	File Function Return Error Codes
	Reading and Writing Data to a File
	CheckForDisk
	EndFileOperations
	FileBOF
	FileClose
	FileDate
	FileDay
	FileDelete
	FileEOF
	FileGetDateNum
	FileGetDayOfWeekNum
	FileGetHourNum
	FileGetMinutesNum
	FileGetMonthNum
	FileGetSecondsNum
	FileGetYearNum
	FILE_INFO Structure
	FileLength
	FileMonth
	FileOpen
	FileRead
	FileSeek
	FileTime
	FindClose
	FindFirst
	FindNext
	GetCurrentDirectory
	IsDirectory
	IsHidden
	IsReadOnly
	IsSystem
	IsVolume
	MakeDirectory
	ReadInteger
	ReadIntegerArray
	ReadLongInteger
	ReadLongIntegerArray
	ReadSignedInteger
	ReadSignedIntegerArray
	ReadSignedLongInteger
	ReadSignedLongIntegerArray
	ReadString
	ReadStringArray
	ReadStructure
	RemoveDirectory
	SetCurrentDirectory
	StartFileOperations
	WaitForNewDisk
	WriteInteger
	WriteIntegerArray
	WriteLongInteger
	WriteSignedInteger
	WriteSignedIntegerArray
	WriteSignedLongInteger
	WriteSignedLongIntegerArray
	WriteStringArray
	WriteStructure
	Max
	MIN
	MulDiv
	SMAX
	SMin
	Random
	Rnd
	Seed
	Print
	String Concatenation
	Find
	Gather
	GetC
	Left
	Len
	Lower
	Mid
	REVERSEFIND
	Right
	SetString
	Upper
	ProcessLogic
	Pulse
	TerminateEvent
	GenerateUserNotice
	GenerateUserWarning
	GenerateUserError
	CheckForNVRAMDisk
	Day
	GETDATENUM
	GETDAYOFWEEKNUM
	GETHOURNUM
	GETHSECONDS
	GETMINUTESNUM
	GETMONTHNUM
	GETSECONDSNUM
	GETTICKS
	GETYEARNUM
	MONTH
	SETCLOCK
	SETDATE
	TIME
	CancelAllWait
	CancelWait
	PauseAllWait
	PauseWait
	ResumeAllWait
	ResumeWait
	RetimeWait
	Wait
	Function Parameters
	ByRef, ByVal, ReadOnlyByRef
	Returning a Value
	Calling a Function
	Function Libraries
	Example 2: 8-Level switch on a Pesa switcher
	Example 3: Computing the Number of Days in a Month (Using Functions)
	Example 4: Computing the Number of Days in a Month (Using Function Libraries)

	Compiler Errors and Warnings
	Compiler Errors and Warnings Overview
	Syntax Errors (Compiler Errors 1000 to 1013)
	Compiler Error 1000
	Compiler Error 1001
	Compiler Error 1002
	Compiler Error 1003
	Compiler Error 1004
	Compiler Error 1005
	Compiler Error 1006
	Compiler Error 1007
	Compiler Error 1008
	Compiler Error 1009
	Compiler Error 1010
	Compiler Error 1011
	Compiler Error 1012
	Compiler Error 1013

	Fatal Errors (Compiler Errors 1100 to 1101)
	Compiler Error 1100
	Compiler Error 1101

	Expression Error (Compiler Errors 1200 to 1201)
	Compiler Error 1200
	Compiler Error 1201

	Declaration Errors (Compiler Errors 1300 to 1312)
	Compiler Error 1300
	Compiler Error 1301
	Compiler Error 1302
	Compiler Error 1303
	Compiler Error 1304
	Compiler Error 1305
	Compiler Error 1306
	Compiler Error 1307
	Compiler Error 1308
	Compiler Error 1309
	Compiler Error 1310
	Compiler Error 1311
	Compiler Error 1312
	Compiler Error 1313
	Compiler Error 1314

	Assignment Errors (Compiler Errors 1400 to 1402)
	Compiler Error 1400
	Compiler Error 1401
	Compiler Error 1402

	Function Argument Errors (Compiler Errors 1500 to 1508)
	Compiler Error 1500
	Compiler Error 1501
	Compiler Error 1502
	Compiler Error 1503
	Compiler Error 1504
	Compiler Error 1505
	Compiler Error 1506
	Compiler Error 1507
	Compiler Error 1508

	Construct Errors (Compiler Errors 1600 to 1608)
	Compiler Error 1600
	Compiler Error 1601
	Compiler Error 1602
	Compiler Error 1603
	Compiler Error 1604
	Compiler Error 1605
	Compiler Error 1606
	Compiler Error 1607
	Compiler Error 1608

	File Errors (Compiler Errors 1700 to 1702)
	Compiler Error 1700
	Compiler Error 1701
	Compiler Error 1702

	Compiler Warnings (Compiler Errors 1800 to 1803)
	Compiler Warning 1800
	Compiler Warning 1801
	Compiler Warning 1802
	Compiler Warning 1803

	SIMPL+ Revisions

	Obsolete Functions
	System Interfacing - Cresnet and CPU
	GetCIP
	GetCresnet
	GetSlot
	IsSignalDefined
	SendCresnetPacket
	SendPacketToCPU
	SetCIP
	SetCresnet
	SetSlot
	#ANALOG_OUTPUT_JOIN
	#DIGITAL_INPUT_JOIN
	#DIGITAL_OUTPUT_JOIN
	#STRING_INPUT_JOIN
	#STRING_OUTPUT_JOIN

	CEN-OEM-Specific Definitions
	_OEM_BREAK
	_OEM_CD
	_OEM_CTS
	_OEM_DTR
	_OEM_LONG_BREAK
	_OEM_MAX_STRING
	_OEM_PACING
	_OEM_RTS
	_OEM_STR_IN
	_OEM_STR_OUT

	Index
	Software License Agreement
	Return and Warranty Policies

